SNOSDE8A July   2023  – September 2023 LM74912-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Revision History
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Characteristics
    7. 6.7 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Charge Pump
      2. 8.3.2 Dual Gate Control (DGATE, HGATE)
        1. 8.3.2.1 Reverse Battery Protection (A, C, DGATE)
        2. 8.3.2.2 Load Disconnect Switch Control (HGATE, OUT)
      3. 8.3.3 Short Circuit Protection (CS+, CS-, ISCP)
      4. 8.3.4 Overvoltage Protection and Battery Voltage Sensing (SW, OV, UVLO)
      5. 8.3.5 Low IQ SLEEP Mode (SLEEP, SLEEP_OV)
    4. 8.4 Device Functional Modes
  10. Applications and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical 12-V Reverse Battery Protection Application
      1. 9.2.1 Design Requirements for 12-V Battery Protection
      2. 9.2.2 Automotive Reverse Battery Protection
        1. 9.2.2.1 Input Transient Protection: ISO 7637-2 Pulse 1
        2. 9.2.2.2 AC Super Imposed Input Rectification: ISO 16750-2 and LV124 E-06
        3. 9.2.2.3 Input Micro-Short Protection: LV124 E-10
      3. 9.2.3 Detailed Design Procedure
        1. 9.2.3.1 Design Considerations
        2. 9.2.3.2 Charge Pump Capacitance VCAP
        3. 9.2.3.3 Input , Supply and Output Capacitance
        4. 9.2.3.4 Hold-Up Capacitance
        5. 9.2.3.5 Overvoltage Protection and Battery Monitor
        6. 9.2.3.6 Selecting Short Circuit Current Threshold
          1. 9.2.3.6.1 Selection of Scaling Resistor RSET and RISCP for Short Circuit Protection
      4. 9.2.4 MOSFET Selection: Blocking MOSFET Q1
      5. 9.2.5 MOSFET Selection: Hot-Swap MOSFET Q2
      6. 9.2.6 TVS Selection
      7. 9.2.7 Application Curves
    3. 9.3 Best Design Practices
    4. 9.4 Power Supply Recommendations
      1. 9.4.1 Transient Protection
      2. 9.4.2 TVS Selection for 12-V Battery Systems
      3. 9.4.3 TVS Selection for 24-V Battery Systems
    5. 9.5 Layout
      1. 9.5.1 Layout Guidelines
      2. 9.5.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Receiving Notification of Documentation Updates
    2. 10.2 Support Resources
    3. 10.3 Trademarks
    4. 10.4 Electrostatic Discharge Caution
    5. 10.5 Glossary
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Automotive Reverse Battery Protection

The LM74912-Q1 feature two separate gate control and driver outputs, DGATE and HGATE, to drive back to back N-channel MOSFETs. This enables LM74912-Q1 to provide comprehensive immunity with robust system protection during various automotive transient tests as per ISO 7637-2 and ISO 16750-2 standard as well as other automotive OEM standards. For more information, see the Automotive EMC-compliant reverse-battery protection with ideal-diode controllers article.

LM74912-Q1 gate drive output DGATE controls MOSFET Q1 to provide reverse battery protection and true reverse current blocking functionality. HGATE controls MOSFET Q2 to turn off the power path during input overvoltage condition. Resistor network R1, R2 and R3 connected to OV and SW can be configured for overvoltage protection and also for battery monitoring under normal operating conditions as well as reverse battery conditions. Bi-directional TVS D1 clamps the automotive transient input voltages on the 12-V battery, both positive and negative transients, to voltage levels safe for MOSFET Q1 and LM74912-Q1.

Fast reverse current blocking response and quick reverse recovery enables LM74912-Q1 to turn ON/OFF MOSFET Q1 during AC super imposed input specified by ISO 16750-2 and LV124 E-06 and provide active rectification of the AC input superimposed on DC battery voltage. Fast reverse current blocking response of LM74912-Q1 helps to turn off MOSFET Q1 during negative transients inputs such as –150-V 2-ms Pulse 1 specified in ISO 7637-2 and input micro short conditions such as LV124 E-10 test.