SNOSDE8A July   2023  – September 2023 LM74912-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Revision History
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Characteristics
    7. 6.7 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Charge Pump
      2. 8.3.2 Dual Gate Control (DGATE, HGATE)
        1. 8.3.2.1 Reverse Battery Protection (A, C, DGATE)
        2. 8.3.2.2 Load Disconnect Switch Control (HGATE, OUT)
      3. 8.3.3 Short Circuit Protection (CS+, CS-, ISCP)
      4. 8.3.4 Overvoltage Protection and Battery Voltage Sensing (SW, OV, UVLO)
      5. 8.3.5 Low IQ SLEEP Mode (SLEEP, SLEEP_OV)
    4. 8.4 Device Functional Modes
  10. Applications and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical 12-V Reverse Battery Protection Application
      1. 9.2.1 Design Requirements for 12-V Battery Protection
      2. 9.2.2 Automotive Reverse Battery Protection
        1. 9.2.2.1 Input Transient Protection: ISO 7637-2 Pulse 1
        2. 9.2.2.2 AC Super Imposed Input Rectification: ISO 16750-2 and LV124 E-06
        3. 9.2.2.3 Input Micro-Short Protection: LV124 E-10
      3. 9.2.3 Detailed Design Procedure
        1. 9.2.3.1 Design Considerations
        2. 9.2.3.2 Charge Pump Capacitance VCAP
        3. 9.2.3.3 Input , Supply and Output Capacitance
        4. 9.2.3.4 Hold-Up Capacitance
        5. 9.2.3.5 Overvoltage Protection and Battery Monitor
        6. 9.2.3.6 Selecting Short Circuit Current Threshold
          1. 9.2.3.6.1 Selection of Scaling Resistor RSET and RISCP for Short Circuit Protection
      4. 9.2.4 MOSFET Selection: Blocking MOSFET Q1
      5. 9.2.5 MOSFET Selection: Hot-Swap MOSFET Q2
      6. 9.2.6 TVS Selection
      7. 9.2.7 Application Curves
    3. 9.3 Best Design Practices
    4. 9.4 Power Supply Recommendations
      1. 9.4.1 Transient Protection
      2. 9.4.2 TVS Selection for 12-V Battery Systems
      3. 9.4.3 TVS Selection for 24-V Battery Systems
    5. 9.5 Layout
      1. 9.5.1 Layout Guidelines
      2. 9.5.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Receiving Notification of Documentation Updates
    2. 10.2 Support Resources
    3. 10.3 Trademarks
    4. 10.4 Electrostatic Discharge Caution
    5. 10.5 Glossary
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Application Information

LM74912-Q1 controls two N-channel power MOSFETs with DGATE used to control diode MOSFET to emulate an ideal diode and HGATE controlling second MOSFET for power path cut-off when disabled or during a overcurrent, overvoltage, or undervoltage events. HGATE controlled MOSFET can be used to clamp the output during overvoltage or load dump conditions. LM74912-Q1 can be placed into low quiescent current mode using EN or SLEEP, where both DGATE and HGATE are turned OFF. The device has a separate supply input pin (VS). The charge pump is derived from this supply input. With the separate supply input provision and separate GATE control architecture, the LM74912-Q1 device drives back to back connected MOSFET in common drain topology thus enabling various system architectures such as power supply ORing and power supply priority MUX applications. With these various topologies, the system designers can design the front-end power system to meet various system design requirements.

The device has a separate supply input pin (VS). The charge pump is derived from this supply input. With the separate supply input provision and separate GATE control architecture, the LM74912-Q1 device drives back to back connected MOSFET in common drain topology thus enabling various system architectures such as power supply ORing and power supply priority MUX applications. With these various topologies, the system designers can design the front-end power system to meet various system design requirements.