SNIS237A December   2024  – April 2025 TMP118

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Two-Wire Interface Timing
    7. 6.7 Timing Diagram
    8. 6.8 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagrams
    3. 7.3 Feature Description
      1. 7.3.1 Digital Temperature Output
      2. 7.3.2 Averaging
      3. 7.3.3 Temperature Comparator and Hysteresis
      4. 7.3.4 Strain Tolerance
      5. 7.3.5 NIST Traceability
    4. 7.4 Device Functional Modes
      1. 7.4.1 Continuous Conversion Mode
      2. 7.4.2 One-Shot Mode (OS)
    5. 7.5 Programming
      1. 7.5.1 I2C and SMBus Interface
        1. 7.5.1.1 Serial Interface
          1. 7.5.1.1.1 Bus Overview
          2. 7.5.1.1.2 Device Address
          3. 7.5.1.1.3 Writing and Reading Operation
            1. 7.5.1.1.3.1 Writes
            2. 7.5.1.1.3.2 Reads
          4. 7.5.1.1.4 General-Call Reset Function
          5. 7.5.1.1.5 Timeout Function
          6. 7.5.1.1.6 Coexistence on I3C Mixed Bus
  9. Device Registers
    1. 8.1 Register Map
      1. 8.1.1 Temp_Result Register (address = 00h) [reset = 0000h]
      2. 8.1.2 Configuration Register (address = 01h) [reset = 60B0h]
      3. 8.1.3 TLow_Limit Register (address = 02h) [reset = 2580h]
      4. 8.1.4 THigh_Limit Register (address = 03h) [reset = 2800h]
      5. 8.1.5 Device ID Register (Address = 0Bh) [reset = 1180h]
      6. 8.1.6 Unique_ID0 Register (Address = 0Ch) [reset = xxxxh]
      7. 8.1.7 Unique_ID1 Register (Address = 0Dh) [reset = xxxxh]
      8. 8.1.8 Unique_ID2 Register (Address = 0Eh) [reset = xxxxh]
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Separate I2C Pullup and Supply Application
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
      2. 9.2.2 Equal I2C Pullup and Supply Voltage Application
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Examples
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • YMS|4
Thermal pad, mechanical data (Package|Pins)
Orderable Information
Writes

To write on the I2C bus, the controller sends a START condition on the bus with the address of the target, as well as the last bit (the R/W bit) set to 0b, which signifies a write. The target acknowledges, letting the controller know the target is present on the bus and ready. After this, the controller starts sending the register pointer and register data to the target until the controller has sent all the data necessary, and the controller terminates the transmission with a STOP condition.

Writes to read-only registers or register locations outside of the register map are ignored. The TMP118 still acknowledges (ACK) when writing outside of the register map. Figure 7-15 shows an example of writing 2-byte data to a single register.

TMP118 Write to Single RegisterFigure 7-15 Write to Single Register