SCDS485A July   2025  – September 2025 TMUX5411 , TMUX5412 , TMUX5413

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Thermal Information
    4. 5.4  Recommended Operating Conditions
    5. 5.5  ±15V Dual Supply: Electrical Characteristics 
    6. 5.6  ±15V Dual Supply: Switching Characteristics 
    7. 5.7  48V Single Supply: Electrical Characteristics 
    8. 5.8  48V Single Supply: Switching Characteristics 
    9. 5.9  12 V Single Supply: Electrical Characteristics 
    10. 5.10 12V Single Supply: Switching Characteristics 
    11. 5.11 Typical Characteristics
  7. Parameter Measurement Information
    1. 6.1  On-Resistance
    2. 6.2  Off-Leakage Current
    3. 6.3  On-Leakage Current
    4. 6.4  tON and tOFF Time
    5. 6.5  Propagation Delay
    6. 6.6  Charge Injection
    7. 6.7  Off Isolation
    8. 6.8  Channel-to-Channel Crosstalk
    9. 6.9  Bandwidth
    10. 6.10 THD + Noise
    11. 6.11 Power Supply Rejection Ratio (PSRR)
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Bidirectional Operation
      2. 7.3.2 Rail-to-Rail Operation
      3. 7.3.3 1.8 V Logic Compatible Inputs
      4. 7.3.4 Flat On-Resistance
      5. 7.3.5 Power-Up Sequence Free
    4. 7.4 Device Functional Modes
      1. 7.4.1 Truth Tables
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Typical Application - Gain Switching
        1. 8.1.1.1 Design Requirements
        2. 8.1.1.2 Application Curve
    2. 8.2 Power Supply Recommendations
    3. 8.3 Layout
      1. 8.3.1 Layout Guidelines
      2. 8.3.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Power Supply Recommendations

The TMUX541x device operates across a wide supply range of ±4.5V to ±25V (4.5V to 50V in single-supply mode). The device also performs well with asymmetrical supplies such as VDD = 37.5V and VSS = –12.5V.

Power-supply bypassing improves noise margin and prevents switching noise propagation from the supply rails to other components. Good power-supply decoupling is important to achieve optimum performance. For improved supply noise immunity, use a supply decoupling capacitor ranging from 0.1μF to 10μF at both the VDD and VSS pins to ground. Place the bypass capacitors as close to the power supply pins of the device as possible using low-impedance connections. TI recommends using multi-layer ceramic chip capacitors (MLCCs) that offer low equivalent series resistance (ESR) and inductance (ESL) characteristics for power-supply decoupling purposes. For very sensitive systems, or for systems in harsh noise environments, avoiding the use of vias for connecting the capacitors to the device pins may offer superior noise immunity. The use of multiple vias in parallel lowers the overall inductance and is beneficial for connections to ground and power planes. Always make sure a solid ground (GND) connection is established before supplies are ramped.