SBOS394E November   2007  – July 2019 VCA824

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Differential Equalizer
      2.      Differential Equalization of an RC Load
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
    1.     Pin Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics: VS = ±5 V
    6. 7.6 Typical Characteristics: VS = ±5 V, AVMAX = 2 V/V
    7. 7.7 Typical Characteristics: VS = ±5 V, AVMAX = 10 V/V
    8. 7.8 Typical Characteristics: VS = ±5 V, AVMAX = 40 V/V
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
    4. 8.4 Device Functional Modes
      1. 8.4.1 Maximum Gain Of Operation
      2. 8.4.2 Output Current And Voltage
      3. 8.4.3 Input Voltage Dynamic Range
      4. 8.4.4 Output Voltage Dynamic Range
      5. 8.4.5 Bandwidth
      6. 8.4.6 Offset Adjustment
      7. 8.4.7 Noise
      8. 8.4.8 Input and ESD Protection
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Difference Amplifier
      2. 9.1.2 Differential Equalizer
      3. 9.1.3 Differential Cable Equalizer
      4. 9.1.4 Voltage-Controlled Lowpass Filter [application sub]
      5. 9.1.5 Wideband Variable Gain Amplifier Operation
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curve
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 Thermal Considerations
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Development Support
        1. 12.1.1.1 Demonstration Boards
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Community Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Thermal Considerations

The VCA824 does not require heatsinking or airflow in most applications. The maximum desired junction temperature sets the maximum allowed internal power dissipation as described in this section. In no case should the maximum junction temperature be allowed to exceed 150°C.

Operating junction temperature (TJ) is given by Equation 12:

Equation 12. VCA824 q_tj_bos394.gif

The total internal power dissipation (PD) is the sum of quiescent power (PDQ) and additional power dissipated in the output stage (PDL) to deliver load power. Quiescent power is simply the specified no-load supply current times the total supply voltage across the part. PDL depends on the required output signal and load; for a grounded resistive load, however, it is at a maximum when the output is fixed at a voltage equal to one-half of either supply voltage (for equal bipolar supplies). Under this worst-case condition, PDL = VS2/(4 × RL), where RL is the resistive load.

Note that it is the power in the output stage and not in the load that determines internal power dissipation. As a worst-case example, compute the maximum TJ using a VCA824ID (SO-14 package) in the circuit of Figure 75 operating at maximum gain and at the maximum specified ambient temperature of 85°C.

Equation 13. VCA824 q_pd_bos394.gif
Equation 14. VCA824 q_max_tj_bos394.gif

This maximum operating junction temperature is well below most system level targets. Most applications should be lower because an absolute worst-case output stage power was assumed in this calculation of VCC/2, which is beyond the output voltage range for the VCA824.