JAJSL84A November   2020  – May 2022 DRV8434

PRODUCTION DATA  

  1. 特長
  2. アプリケーション
  3. 概要
  4. Revision History
  5. Pin Configuration and Functions
    1. 5.1 端子機能
  6. 仕様
    1. 6.1 絶対最大定格
    2. 6.2 ESD 定格
    3. 6.3 推奨動作条件
    4. 6.4 熱に関する情報
    5. 6.5 Electrical Characteristics
    6. 6.6 Indexer Timing Requirements
      1. 6.6.1 代表的特性
  7. 詳細説明
    1. 7.1 概要
    2. 7.2 機能ブロック図
    3. 7.3 機能説明
      1. 7.3.1  Stepper Motor Driver Current Ratings
        1. 7.3.1.1 ピーク電流定格
        2. 7.3.1.2 RMS 電流定格
        3. 7.3.1.3 Full-Scale Current Rating
      2. 7.3.2  PWM Motor Drivers
      3. 7.3.3  Microstepping Indexer
      4. 7.3.4  Controlling VREF with an MCU DAC
      5. 7.3.5  電流レギュレーション
      6. 7.3.6  Decay Modes
        1. 7.3.6.1 Slow Decay for Increasing and Decreasing Current
        2. 7.3.6.2 Slow Decay for Increasing Current, Mixed Decay for Decreasing Current
        3. 7.3.6.3 電流増加および減少でミックス・ディケイ
        4. 7.3.6.4 Smart tune Dynamic Decay
        5. 7.3.6.5 スマート・チューン・リップル・コントロール
        6. 7.3.6.6 PWM オフ時間
        7. 7.3.6.7 ブランキング時間
      7. 7.3.7  チャージ・ポンプ
      8. 7.3.8  リニア電圧レギュレータ
      9. 7.3.9  Logic Level, Tri-Level and Quad-Level Pin Diagrams
        1. 7.3.9.1 nFAULT ピン
      10. 7.3.10 保護回路
        1. 7.3.10.1 VM 低電圧誤動作防止 (UVLO)
        2. 7.3.10.2 VCP 低電圧誤動作防止 (CPUV)
        3. 7.3.10.3 過電流保護 (OCP)
          1. 7.3.10.3.1 ラッチド・シャットダウン
          2. 7.3.10.3.2 自動リトライ
        4. 7.3.10.4 開放負荷検出 (OL)
        5. 7.3.10.5 サーマル・シャットダウン (OTSD)
          1. 7.3.10.5.1 ラッチド・シャットダウン
          2. 7.3.10.5.2 自動リトライ
        6.       Fault Condition Summary
    4. 7.4 デバイスの機能モード
      1. 7.4.1 スリープ・モード (nSLEEP = 0)
      2.      52
      3. 7.4.2 ディセーブル・モード (nSLEEP = 1、ENABLE = 0)
      4. 7.4.3 動作モード (nSLEEP = 1、ENABLE = ハイ・インピーダンス / 1)
      5. 7.4.4 nSLEEP リセット・パルス
      6.      機能モードのまとめ
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Stepper Motor Speed
        2. 8.2.2.2 電流レギュレーション
        3. 8.2.2.3 ディケイ・モード
        4. 8.2.2.4 アプリケーション曲線
        5. 8.2.2.5 Thermal Application
          1. 8.2.2.5.1 Power Dissipation
          2. 8.2.2.5.2 Conduction Loss
          3. 8.2.2.5.3 Switching Loss
          4. 8.2.2.5.4 Power Dissipation Due to Quiescent Current
          5. 8.2.2.5.5 Total Power Dissipation
          6. 8.2.2.5.6 Device Junction Temperature Estimation
  9. Power Supply Recommendations
    1. 9.1 バルク・コンデンサ
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Related Documentation
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 サポート・リソース
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Microstepping Indexer

Built-in indexer logic in the device allows a number of different step modes. The M0 and M1 pins are used to configure the step mode as shown below. The settings can be changed on the fly.

Table 7-2 Microstepping Indexer Settings
M0 M1 STEP MODE
0

0

Full step (2-phase excitation) with 100% current
0 330 kΩ to GND Full step (2-phase excitation) with 71% current
1 0 Non-circular 1/2 step
Hi-Z 0 1/2 step
0 1 1/4 step
1 1 1/8 step
Hi-Z 1 1/16 step
0 Hi-Z 1/32 step
Hi-Z 330kΩ to GND 1/64 step
Hi-Z Hi-Z 1/128 step
1 Hi-Z 1/256 step

Table 7-3 shows the relative current and step directions for full-step (71% current), 1/2 step, 1/4 step and 1/8 step operation. Higher microstepping resolutions follow the same pattern. The AOUT current is the sine of the electrical angle and the BOUT current is the cosine of the electrical angle. Positive current is defined as current flowing from the xOUT1 pin to the xOUT2 pin while driving.

At each rising edge of the STEP input the indexer advances to the next state in the table. The direction shown is with the DIR pin logic high. If the DIR pin is logic low, the sequence table is reversed.

Note:

If the step mode is changed dynamically while stepping, the indexer advances to the next valid state for the new step mode setting at the rising edge of STEP.

The initial excitation state is an electrical angle of 45°, corresponding to 71% of full-scale current in both coils. This state is entered immediately after power-up, after exiting logic undervoltage lockout, or after exiting sleep mode.

Table 7-3 Relative Current and Step Directions
1/8 STEP1/4 STEP1/2 STEPFULL STEP 71%AOUT CURRENT
(% FULL-SCALE)
BOUT CURRENT
(% FULL-SCALE)
ELECTRICAL ANGLE (DEGREES)
1110%100%0.00
220%98%11.25
3238%92%22.50
456%83%33.75
532171%71%45.00
683%56%56.25
7492%38%67.50
898%20%78.75
953100%0%90.00
1098%-20%101.25
11692%-38%112.50
1283%-56%123.75
1374271%-71%135.00
1456%-83%146.25
15838%-92%157.50
1620%-98%168.75
17950%-100%180.00
18-20%-98%191.25
1910-38%-92%202.50
20-56%-83%213.75
211163-71%-71%225.00
22-83%-56%236.25
2312-92%-38%247.50
24-98%-20%258.75
25137-100%0%270.00
26-98%20%281.25
2714-92%38%292.50
28-83%56%303.75
291584-71%71%315.00
30-56%83%326.25
3116-38%92%337.50
32-20%98%348.75

Table 7-4 shows the full step operation with 100% full-scale current. This stepping mode consumes more power than full-step mode with 71% current, but provides a higher torque at high motor RPM.

Table 7-4 Full Step with 100% Current
FULL STEP 100%AOUT CURRENT
(% FULL-SCALE)
BOUT CURRENT
(% FULL-SCALE)
ELECTRICAL ANGLE (DEGREES)
110010045
2100-100135
3-100-100225
4-100100315

Table 7-5 shows the noncircular 1/2–step operation. This stepping mode consumes more power than circular 1/2-step operation, but provides a higher torque at high motor RPM.

Table 7-5 Non-Circular 1/2-Stepping Current
NON-CIRCULAR 1/2-STEPAOUT CURRENT
(% FULL-SCALE)
BOUT CURRENT
(% FULL-SCALE)
ELECTRICAL ANGLE (DEGREES)
101000
210010045
3100090
4100–100135
50–100180
6–100–100225
7–1000270
8–100100315