JAJSK13C September   2020  – December 2021 TPS542A52

PRODUCTION DATA  

  1. 特長
  2. アプリケーション
  3. 概要
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Enable and Adjustable Undervoltage Lockout
      2. 7.3.2  Input and VREG Undervoltage Lockout Protection
      3. 7.3.3  Voltage Reference and Setting the Output Voltage
      4. 7.3.4  Remote Sense Function
      5. 7.3.5  Switching Frequency
      6. 7.3.6  Voltage Control Mode Internal Compensation
      7. 7.3.7  Soft Start and Prebiased Output Start-up
      8. 7.3.8  Power Good
      9. 7.3.9  Overvoltage and Undervoltage Protection
      10. 7.3.10 Overcurrent Protection
      11. 7.3.11 High-Side FET Throttling
      12. 7.3.12 Overtemperature Protection
    4. 7.4 Device Functional Modes
      1. 7.4.1 Pulse-Frequency Modulation Eco-mode Light Load Operation
      2. 7.4.2 Forced Continuous-Conduction Mode
      3. 7.4.3 Soft Start
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Full Analog Configuration
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1  Custom Design With WEBENCH® Tools
          2. 8.2.1.2.2  Output Voltage Calculation
          3. 8.2.1.2.3  Switching Frequency Selection
          4. 8.2.1.2.4  Inductor Selection
          5. 8.2.1.2.5  Input Capacitor Selection
          6. 8.2.1.2.6  Bootstrap Capacitor Selection
          7. 8.2.1.2.7  R-C Snubber and VIN Pin High-Frequency Bypass
          8. 8.2.1.2.8  Output Capacitor Selection
          9. 8.2.1.2.9  Response to a Load Transient
          10. 8.2.1.2.10 Pin-Strap Setting
        3. 8.2.1.3 Application Curves
        4. 8.2.1.4 Typical Application Circuits
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Development Support
        1. 11.1.1.1 Custom Design With WEBENCH® Tools
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 サポート・リソース
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Voltage Control Mode Internal Compensation

The TPS542A52 has 15 unique internal compensation settings to cover a wide range of output inductors and capacitors. For each switching frequency option, there are four compensation options that can be chosen using a single resistor to ground on the COMP pin.

Table 7-2 Compensation Resistor Selection
RCOMP (kΩ)++COMPENSATION SETTING
ShortCOMP 2
7.5COMP 1
18.2COMP 2
26.1COMP 3
35.7COMP 4
47.5COMP 1
61.9COMP 2
78.7COMP 3
102COMP 4

Each compensation network consists of two zeros and one high frequency pole. Table 7-3 maps the compensation settings to the first zero frequency at different output voltage range, second zero frequency, and high frequency pole.

Table 7-3 Compensation Settings
FREQUENCY (kHz)COMPENSATION SETTINGZERO 1 (kHz) for VOUT = 0.5 V-1.1 VZERO 1 (kHz) for VOUT = 1.2 V-1.5 VZERO 1 (kHz) for VOUT = 1.6 V-2.8 VZERO 1 (kHz) for VOUT = 2.9 V-4.0 VZERO 1 (kHz) for VOUT = 4.1 V-5.5 VZERO 2 (kHz)POLE (kHz)
400COMP 12.22.11.81.61.25.560
COMP 22.22.11.81.61.27.380
COMP 33.63.43.02.72.014.5159
COMP 47.27.06.15.44.128.4312
600COMP 12.22.11.81.61.25.560
COMP 22.72.62.32.01.511.0121
COMP 34.54.33.83.42.518.1199
COMP 410.510.18.87.95.945.2497
800COMP 12.22.11.81.61.27.380
COMP 23.63.43.02.72.014.5159
COMP 37.27.06.05.44.128.4312
COMP 413.51311.410.17.655.6612
1000COMP 12.22.11.91.71.29.099
COMP 24.54.33.83.42.518.1199
COMP 39.08.77.66.75.137.1408
COMP 418.818.215.914.110.672.3796
1200COMP 12.72.62.32.01.511.0121
COMP 24.54.33.83.42.518.1199
COMP 310.510.18.87.95.945.2497
COMP 423.522.719.917.713.390.4995
2000COMP 14.54.33.83.42.518.1199
COMP 298.77.66.75.137.1408
COMP 318.818.215.914.110.672.3796
COMP 437.736.431.828.321.2144.71592
2200COMP 14.54.33.83.42.518.1199
COMP 298.77.66.75.137.1408
COMP 318.818.215.914.110.672.3796
COMP 437.736.431.828.321.2144.71592

Table 7-4 shows the second zero frequency placement about two times based on a ratio (fO/fSW) of the LC frequency (fO) to the switching frequency and lists the values in Table 7-3. The second zero frequency does not change with the output voltage. The high frequency pole is about 10 times of the second zero frequency to attenuate the switching frequency noise and to have a safe gain margin.

The output filter LC frequency should be designed between the first and second zero frequencies. The ratio of the LC frequency to the switching frequency in Table 7-4 is a guide to select the LC frequency fO. For example, the LC frequency for 1-MHz switching frequency is 10 kHz at 1% ratio. Given 1-V output voltage, COMP2 has the first zero at 4.5 kHz to compensate the LC filter double poles. For the same LC filter and switching frequencies of 3.3-V output voltage, COMP3 has the first zero at 6.7 kHz to compensate the LC filter double poles. The compensation setting needs to consider for the output capacitor derating, especially ceramic capacitor and inductor tolerance. It is recommended to verify the load transient and bode plot based upon the compensation selection.

Table 7-4 Second Zero Frequency
fO/fSW COMPENSATION SETTING SECOND ZERO FREQUENCY
0.5% COMP 1 ~2X of 0.5% fO/fSW
1% COMP 2 ~2X of 1% fO/fSW
2% COMP 3 ~2X of 2% fO/fSW
4% COMP 4 ~2X of 4% fO/fSW