JAJAAA2A October   2024  – November 2025 MSPM0C1103 , MSPM0C1103-Q1 , MSPM0C1104 , MSPM0C1104-Q1 , MSPM0C1105 , MSPM0C1106 , MSPM0C1106-Q1 , MSPM0G1105 , MSPM0G1106 , MSPM0G1107 , MSPM0G1505 , MSPM0G1506 , MSPM0G1507 , MSPM0G1518 , MSPM0G1519 , MSPM0G3105 , MSPM0G3105-Q1 , MSPM0G3106 , MSPM0G3106-Q1 , MSPM0G3107 , MSPM0G3107-Q1 , MSPM0G3505 , MSPM0G3505-Q1 , MSPM0G3506 , MSPM0G3506-Q1 , MSPM0G3507 , MSPM0G3507-Q1 , MSPM0G3518 , MSPM0G3518-Q1 , MSPM0G3519 , MSPM0G3519-Q1 , MSPM0H3216 , MSPM0H3216-Q1 , MSPM0L1105

 

  1.   1
  2.   概要
  3.   商標
  4. 1ADC の概要
    1. 1.1 SAR ADC の原理
    2. 1.2 ADC のパラメータ
      1. 1.2.1 静的パラメータ
      2. 1.2.2 動的パラメータ
        1. 1.2.2.1 AC のパラメータ
        2. 1.2.2.2 DC のパラメータ
  5. 2ADC ノイズ解析
    1. 2.1 ADC ノイズ分類
      1. 2.1.1 ADC ノイズ
      2. 2.1.2 リファレンスノイズ
      3. 2.1.3 電源ノイズ
      4. 2.1.4 ADC 入力ノイズ
      5. 2.1.5 クロック ジッタ
    2. 2.2 ノイズを低減する方法
      1. 2.2.1 RC フィルタリングによる入力ノイズの低減
      2. 2.2.2 レイアウトに関する推奨事項
      3. 2.2.3 信号対雑音比の向上
      4. 2.2.4 適切なリファレンス電圧源を選択
      5. 2.2.5 ノイズを低減するソフトウェア方式
  6. 3ADC オーバーサンプリング
    1. 3.1 サンプリング レート
    2. 3.2 抽出
    3. 3.3 アプリケーションの条件
  7. 4MSPM0 をベースとする ADC アプリケーション
    1. 4.1 MSPM0 の ADC 構成
    2. 4.2 MSPM0G3507 ADC EVM 基板を用いた ADC の DC テスト
      1. 4.2.1 ソフトウェア / ハードウェアの構成
        1. 4.2.1.1 ハードウェア
        2. 4.2.1.2 ソフトウェア
      2. 4.2.2 テスト結果
      3. 4.2.3 結果の分析と結論
  8. 5改訂履歴

抽出

従来の平均化の意味は、m 個のサンプルを追加し、結果を m で除算することです。信号の変動とノイズを減衰させるローパス フィルタを使用した ADC 測定結果からのいくつかのデータを平均化します。m の N ビット サンプルの平均は依然として N ビットの分解能の表現であるため、通常の平均化では変換の分解能は増加しないことに注意してください。抽出は平均化方式で、N ビットよりも高い分解能を得るには m 未満の数値の平均を必要とします。ノイズを低減するソフトウェア方式で説明されているように、オーバーサンプリングと組み合わせると、抽出により ADC の分解能が向上します