SBAA510 October   2021 DRV5032 , TMAG5170 , TMAG5231 , TMAG5273

 

  1.   Trademarks
  2. 1Introduction
  3. 2Reed Switch Overview
  4. 3Hall Effect Sensor Overview
  5. 4Performance Comparison
  6. 5DRV5032 Test Setup and Results
    1. 5.1 DRV5032 Test Setup
    2. 5.2 Understanding the Results
    3. 5.3 DRV5032 Test Results
    4. 5.4 Front Approach Results
    5. 5.5 Side Approach
    6. 5.6 Tamper Susceptibility Testing Setup
    7. 5.7 Tamper Susceptibility Test Results
  7. 6Reed Switch Test Setup and Results
    1. 6.1 Reed Switch Test Setup
    2. 6.2 Reed Switch Test Results
    3. 6.3 Front Approach Results
    4. 6.4 Side Approach Results
    5. 6.5 Tamper Susceptibility Testing Setup
    6. 6.6 Reed Switch Tamper Susceptibility Test Results
  8. 7TMAG5170 Test Setup and Results
    1. 7.1 TMAG5170 Test Setup
    2. 7.2 TMAG5170 Test Results
    3. 7.3 TMAG5170 Tamper Susceptibility Testing Setup
    4. 7.4 TMAG5170 Tamper Susceptibility Test Results
  9. 8Summary

Reed Switch Tamper Susceptibility Test Results

  • Entry door – For this test, the Reed switch was influenced by the tamper magnet over multiple test trials. Audible continuity tone showed that the Reed switch contacts closed once the tamper magnet was brought close enough from the outside of the door.
  • Sliding glass door – For the sliding glass door, the magnet was able to make the Reed switch contacts close from the outside of the sliding door. This indicates that the Reed switch can be rendered essentially nonfunctional from a tamper magnet in the mounting scenario shown in Figure 6-7.