SBOSAN2A August   2025  – December 2025 PGA854

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Gain Control
      2. 7.3.2 Input Protection
      3. 7.3.3 Output Common-Mode Pin
      4. 7.3.4 Using the Fully Differential Output Amplifier to Shape Noise
    4. 7.4 Device Functional Modes
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Linear Operating Input Range
      2. 8.1.2 Current Consumption with Differential Inputs
    2. 8.2 Typical Application
      1. 8.2.1 ADS127L11 and ADS127L21B, 24-Bit, Delta-Sigma ADC Driver Circuit
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Development Support
        1. 9.1.1.1 PSpice® for TI
        2. 9.1.1.2 TINA-TI™ Simulation Software (Free Download)
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 Receiving Notification of Documentation Updates
    4. 9.4 Support Resources
    5. 9.5 Trademarks
    6. 9.6 Electrostatic Discharge Caution
    7. 9.7 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Power Supply Recommendations

The nominal performance of the PGA854 is specified with input-stage supply and output-stage supply voltages of ±15V, and VICM and VOCM at mid-supply. Within the specified limits, custom input common-mode and output common-mode voltages are usable without compromising performance; see also Section 6.3. To prevent damage to internal circuitry, the output-stage power supplies are clamped to stay within the input-stage supply voltage levels; see also Section 7.2.

CAUTION: Supply voltages greater than 40V (±20V) permanently damage the device. Parameters that vary over supply voltage or temperature are shown in Section 6.6 of this data sheet.