SLAAEN5 February   2025 MSPM0G1106 , MSPM0G1107 , MSPM0G1506 , MSPM0G1507 , MSPM0G1518 , MSPM0G1519 , MSPM0G3106 , MSPM0G3106-Q1 , MSPM0G3107 , MSPM0G3107-Q1 , MSPM0G3506 , MSPM0G3506-Q1 , MSPM0G3507 , MSPM0G3507-Q1 , MSPM0G3518 , MSPM0G3518-Q1 , MSPM0G3519 , MSPM0G3519-Q1

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Introduction
    1. 1.1 Bridge between CAN and SPI
  5. 2Implementation
    1. 2.1 Principle
    2. 2.2 Structure
  6. 3Software Description
    1. 3.1 Software Functionality
    2. 3.2 Configurable Parameters
    3. 3.3 Structure of Custom Element
    4. 3.4 Structure of FIFO
    5. 3.5 SPI Receive and Transmit (Transparent Transmission)
    6. 3.6 SPI Receive and Transmit (Protocol Transmission)
    7. 3.7 CAN Receive and Transmit
    8. 3.8 Application Integration
  7. 4Hardware
  8. 5Application Aspects
    1. 5.1 Flexible structure
    2. 5.2 Optional Configuration for SPI
    3. 5.3 Optional Configuration for CAN
    4. 5.4 CAN Bus Multinode Communication Example
  9. 6Summary
  10. 7References

Summary

This document introduces the implementation of a CAN to SPI bridge, including structure, function definition, interface usage and application aspects. The MSPM0 device can act as a translator between the CAN and the SPI, which allows the bridge to send and receive information on one interface and receive and send the information on the other interface.