SLLSFY0A September   2025  – December 2025 TCAN843-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  ESD Ratings - IEC Specifications
    4. 5.4  Recommended Operating Conditions
    5. 5.5  Thermal Information
    6. 5.6  Power Dissipation Ratings
    7. 5.7  Power Supply Characteristics
    8. 5.8  Electrical Characteristics
    9. 5.9  Timing Requirements
    10. 5.10 Switching Characteristics
    11. 5.11 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Supply Pins
        1. 7.3.1.1 VSUP Pin
        2. 7.3.1.2 VCC Pin
        3. 7.3.1.3 VIO Pin
      2. 7.3.2 Digital Inputs and Outputs
        1. 7.3.2.1 TXD Pin
        2. 7.3.2.2 RXD Pin
        3. 7.3.2.3 nFAULT Pin
        4. 7.3.2.4 EN Pin
        5. 7.3.2.5 nSTB Pin
        6. 7.3.2.6 NC Pin
      3. 7.3.3 GND
      4. 7.3.4 INH Pin
      5. 7.3.5 WAKE Pin
      6. 7.3.6 CAN Bus Pins
      7. 7.3.7 Faults
        1. 7.3.7.1 Internal and External Fault Indicators
          1. 7.3.7.1.1 Power-Up (PWRON Flag)
          2. 7.3.7.1.2 Wake-Up Request (WAKERQ Flag)
          3. 7.3.7.1.3 Undervoltage Faults
            1. 7.3.7.1.3.1 Undervoltage on VSUP
            2. 7.3.7.1.3.2 Undervoltage on VCC
            3. 7.3.7.1.3.3 Undervoltage on VIO
          4. 7.3.7.1.4 TXD Dominant State Timeout (TXDDTO Flag)
          5. 7.3.7.1.5 TXD Shorted to RXD Fault (TXDRXD Flag)
          6. 7.3.7.1.6 CAN Bus Dominant Fault (CANDOM Flag)
      8. 7.3.8 Local Faults
        1. 7.3.8.1 TXD Dominant Timeout (TXD DTO)
        2. 7.3.8.2 Thermal Shutdown (TSD)
        3. 7.3.8.3 Undervoltage Lockout (UVLO)
        4. 7.3.8.4 Unpowered Devices
        5. 7.3.8.5 Floating Terminals
        6. 7.3.8.6 CAN Bus Short-Circuit Current Limiting
    4. 7.4 Device Functional Modes
      1. 7.4.1 Operating Mode Description
        1. 7.4.1.1 Normal Mode
        2. 7.4.1.2 Silent Mode
        3. 7.4.1.3 Standby Mode
        4. 7.4.1.4 Go-To-Sleep Mode
        5. 7.4.1.5 Sleep Mode
          1. 7.4.1.5.1 Remote Wake Request via Wake-Up Pattern (WUP)
          2. 7.4.1.5.2 Local Wake-Up (LWU) by WAKE Input Terminal
      2. 7.4.2 CAN Transceiver
        1. 7.4.2.1 CAN Transceiver Operation
          1. 7.4.2.1.1 Driver and Receiver Function Tables
          2. 7.4.2.1.2 CAN Bus States
  9. Application Information Disclaimer
    1. 8.1 Application Information
      1. 8.1.1 Typical Application
      2. 8.1.2 Design Requirements
        1. 8.1.2.1 Bus Loading, Length and Number of Nodes
      3. 8.1.3 Detailed Design Procedure
        1. 8.1.3.1 CAN Termination
      4. 8.1.4 Application Curves
    2. 8.2 Power Supply Recommendations
    3. 8.3 Layout
      1. 8.3.1 Layout Guidelines
      2. 8.3.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 CAN Transceiver Physical Layer Standards:
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information
Local Wake-Up (LWU) by WAKE Input Terminal

The WAKE terminal is a bi-directional high-voltage reverse-battery protected input which can be used for local wake-up (LWU) requests through a voltage transition. A LWU event is triggered on either a low-to-high or high-to-low transition due to the bi-directional input thresholds. The WAKE pin can be used with a switch to VSUP, to VCC, to VIO, or to ground. If the terminal is unused, the terminal must be pulled to supply or to ground to avoid unwanted parasitic wake-up events. Current consumption is minimized when WAKE is connected to 5V or to ground.

TCAN843-Q1 WAKE Circuit ExampleFigure 7-6 WAKE Circuit Example

Figure 7-6 shows two possible configurations for the WAKE pin, a low-side and high-side switch configuration. The objective of the series resistor, RSERIES, is to protect the WAKE input of the device from over current conditions that can occur in the event of a ground shift or ground loss. The minimum value of RSERIES can be calculated using the maximum supply voltage, VSUPMAX, and the maximum allowable current of the WAKE pin, IIO(WAKE). RSERIES is calculated using:

Equation 3. RSERIES = VSUPMAX / IIO(WAKE)

With absolute maximum voltage, VSUPMAX, of 40V and maximum allowable IIO(WAKE) of 3mA, the minimum required RSERIES value is 13.3kΩ.

The LWU circuitry is active in Sleep mode and Standby mode.

The WAKE circuitry is switched off in Normal mode and Silent mode.

TCAN843-Q1 LWU Request Rising EdgeFigure 7-7 LWU Request Rising Edge
TCAN843-Q1 LWU Request Falling EdgeFigure 7-8 LWU Request Falling Edge