SLVSHM2A March   2025  – August 2025 TPS2HC120-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 SNS Timing Characteristics
    7. 6.7 Switching Characteristics
    8. 6.8 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Pin Current and Voltage Conventions
      2. 7.3.2 Low Power Mode
      3. 7.3.3 Accurate Current Sense
      4. 7.3.4 Adjustable Current Limit
      5. 7.3.5 Inductive-Load Switching-Off Clamp
      6. 7.3.6 Fault Detection and Reporting
        1. 7.3.6.1 Diagnostic Enable Function
        2. 7.3.6.2 Multiplexing of Current Sense
        3. 7.3.6.3 FAULT Reporting
        4. 7.3.6.4 Fault Table
      7. 7.3.7 Full Diagnostics
        1. 7.3.7.1 Short-to-GND and Overload Detection
        2. 7.3.7.2 Open-Load Detection
          1. 7.3.7.2.1 Channel On
          2. 7.3.7.2.2 Channel Off
        3. 7.3.7.3 Short-to-Battery Detection
        4. 7.3.7.4 Reverse-Polarity and Battery Protection
        5. 7.3.7.5 Thermal Fault Detection
          1. 7.3.7.5.1 Thermal Protection Behavior
      8. 7.3.8 Full Protections
        1. 7.3.8.1 UVLO Protection
        2. 7.3.8.2 Loss of GND Protection
        3. 7.3.8.3 Loss of Power Supply Protection
        4. 7.3.8.4 Reverse Battery Protection
        5. 7.3.8.5 Protection for MCU I/Os
    4. 7.4 Device Functional Modes
      1. 7.4.1 Working Mode
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curves
    3. 8.3 EMC Transient Disturbances Test
    4. 8.4 Power Supply Recommendations
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
      2. 8.5.2 Layout Examples
        1. 8.5.2.1 Without a GND Network
        2. 8.5.2.2 With a GND Network
  10. Device and Documentation Support
    1. 9.1 Third-Party Products Disclaimer
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Electrical Characteristics

VBB = 6 V to 18 V, TJ = –40°C to 150°C (unless otherwise noted); Typical application is 13.5V, 1A, RILIM = Open (unless otherwise specified). Digital input pins are EN1, EN2, EN1_AUX, EN2_AUX, SEL0, DIAG_EN.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
INPUT VOLTAGE AND CURRENT
VUVLOR VBB undervoltage lockout rising Measured with respect to the GND pin of the device 3.2 3.6 4.0 V
VUVLOF VBB undervoltage lockout falling 2.5 2.75 3.0 V
VClamp VDS clamp voltage T= 25°C 35 43 V
TJ = –40°C to 150°C 34 45 V
VOUTClamp VOUT clamp voltage  TJ = –40°C to 150°C -31 -23 V
IQ Quiescent current all channels enabled VBB ≤ 28V, VEN = 5V , VDIAG_EN = 5V, IOUTx = 0A 2.8 4.6 mA
ISB Current consumption in standby mode VBB ≤ 18V, ISNS = 0mA
VENx = 0V, VDIAG_EN = 5V, VOUT = 0V 
3.8 4.6 mA
tSTBY Delay time to remain in standby mode before entering sleep mode VENx = VDIAG_EN =  5V to 0V to sleep mode 20 ms
ISLEEP Sleep current (total device leakage including MOSFET channels) VBB ≤ 18V, VENx = VDIAG_EN = 0V, VOUT = 0V TJ = 25°C
 
0.5 µA
TJ = 85°C
 
1.75 µA
IOUT(sleep) Output leakage current per channel VBB ≤ 1V, TJ = 25°C
VENx = VDIAG_EN = 0V, VOUT = 0V VOUT to GND
0.01 0.1 µA
VBB ≤ 18V, TJ = 85°C
VENx = VDIAG_EN = 0V, VOUT = 0V VOUT to GND
0.5 µA
ILNOM Continuous load current per channel All channels enabled TAMB = 85°C 2 A
One channel enabled 3 A
RON CHARACTERISTICS
RON On-resistance 5V < VBB ≤ 28V,   IOUT= 1 A TJ = 25°C 120
TJ = 150°C 250
3V ≤ VBB ≤ 5V,    IOUT =1 A TJ = 25°C 175
TJ = 150°C 280
ΔRON Percentage difference in On-state resistance between channels 5V < VBB ≤ 28V,   IOUT= 1A TJ = –40°C to 150°C 5 %
RON(REV) On-resistance during reverse polarity –18V ≤ VBB ≤ –6V TJ = 25°C 120
TJ = 150°C 250
VF Drain-to-source diode voltage VEN = 0V IOUT = –0.1A 0.3 0.7 1 V
CURRENT SENSE CHARACTERISTICS
KSNS Current sense ratio
IOUT / ISNS
IOUT = 1A 1050
ISNSI Current sense current and accuracy VEN = VDIA_EN = 5V IOUT = 2A   1.9   mA
–4 3 %
IOUT = 1.5A   1.43   mA
–4 3 %
IOUT = 750mA   0.72   mA
–4 4 %
IOUT = 300mA 0.29   mA
–5 5 %
IOUT = 100mA   0.1   mA
–12 12 %
IOUT = 75mA 0.072 mA
–16 16 %
IOUT = 30mA 0.03 mA
–35 35 %
IOUT = 15mA 0.014 mA
–50 50 %
IOUT =10mA 0.0095 mA
-50 50 %
SNS CHARACTERISTICS
VSNSFH VSNS fault high-level VDIAG_EN = 5V RSNS= 1kΩ 4.5 5 5.2 V
VDIAG_EN  = 3.3V RSNS= 1kΩ 3.2 3.6 3.9 V
VDIAG_EN = VIH (1.8V) RSNS= 1kΩ 3.2 3.6 3.9 V
ISNSFH ISNS fault high-level VDIA_EN > VIH,DIAG_EN 4.5 6.5 mA
VBB_ISNS VBB headroom needed for full current sense and fault functionality VDIA_EN = 3.3V 5 V
VBB_ISNS VBB headroom needed for full current sense and fault functionality VDIA_EN = 5V 6.5 V
CURRENT LIMIT CHARACTERISTICS
ICL ICL setting RLIM > 60kΩ (ILIM open) 4 5 6 A
RLIM < 1.1kΩ (ILIM short to ground) 1.8 2.25 2.7 A
RLIM = 2.49kΩ 1.6 2 2.4 A
RLIM = 4.87kΩ 1.4 1.75 2.1 A
RLIM = 9.76kΩ 1.2 1.5 1.8 A
RLIM = 16.5kΩ 1 1.25 1.5 A
RLIM = 23.2kΩ 0.8 1 1.2 A
RLIM = 31.6kΩ 0.6 0.75 0.9 A
RLIM = 43.2kΩ (1) 0.35 0.5 0.65 A
RLIM = 57.6kΩ (1) 0.175 0.25 0.325 A
ICL_ENPS Peak current enabling into permanent short TJ = –40°C to 150°C Load = 5µH +100mΩ 2.25 × ICL A
ICL_LINPK Linear Mode peak TJ = -40°C to 150°C dI/dt < 0.01 A/ms IILIM = 0.25A to 2.5A 1.4 × ICL A
IOVCR,threshold Short-circuit detection threshold TJ = -40°C to 150°C 1.6 × ICL A
IOVCR OVCR Peak current when short is applied while switch enabled TJ = -40°C to 150°C tOVCR = 1.5 µs, Lshort = 5µH 12 A
FAULT CHARACTERISTICS
RVOL Open-load (OL) detection internal resistor VEN = 0 V, VDIA_EN = 5V 100 135 165 kΩ
tOL Open-load (OL) detection deglitch time VEN = 0V, VDIA_EN = 5V, When VBB – VOUT < VOL, duration longer than tOL. Openload detected. 400 1000 µs
VOL Open-load (OL) detection voltage VEN = 0V, VDIA_EN = 5V 1.5 V
tOL1 OL and STB indication-time from EN falling VEN = 5V to 0V, VDIA_EN = 5V
IOUT = 0mA, VOUT = VBB – VOL
500 1000 µs
tOL2 OL and STB indication-time from DIA_EN rising VEN = 0V, VDIA_EN = 0V to 5V
IOUT = 0mA, VOUT = VBB – VOL
1000 µs
TABS Thermal shutdown for CHx 162 °C
THYS CHx Thermal shutdown hysteresis 30 °C
TREL CHx Relative thermal shutdown 80 °C
THYS CHx Thermal shutdown - relative hysteresis 30 °C
tFAULT_FLT Fault  indication-time VDIA_EN = 5V
Time between fault and FLT asserting
60 µs
tFAULT_SNS Fault  indication-time VDIA_EN = 5V
Time between fault and ISNS settling at VSNSFH
60 µs
tRETRY Retry time Time from fault shutdown until switch re-enable (thermal shutdown). 1 2 3 ms
LOW POWER MODE
ILOAD,entry Load current level for entry to LPM t > tSTBY 83 110 137 mA
ILOAD,exit Load current level for exit of LPM 130 165 200 mA
RDSON,LPM RDSON Low Power Mode 50mA ILOAD 130 mΩ
IQLPM Quiescent current per channel in LPM with all channels enabled at 0 mA 9.5 12 µA
tLPM_FLT LPM Transition indication-time Device in LPM transitioning out
time between fault and FLT asserting
100 µs
tWAKE Recovery/Exit time from LPM Device in LPM transitioning out
time between wake interrupt and LPM asserting
50 µs
IPKLPM,SC Short circuit threshold for immediate shut-off during LPM mode ILIM ≤ 2.25A 1.6×ILIM
ILIM = 5A 3.6 A
DIGITAL INPUT PIN CHARACTERISTICS
VIL, DIN Input voltage low-level No GND Network 0.8 V
VIH, DIN Input voltage high-level No GND Network 1.5 V
VIHYS, DIN Input voltage hysteresis 100 mV
RPD_DIN Internal pulldown resistor for ENx, ENx_AUX, DIAG_EN 0.7 1 1.3
Internal pulldown resistor for SEL0 0.7 1 1.3
IIH, DIN Input current high-level for SEL0 VDINx = 5.5V 10 µA
Input current high-level for DIAG_EN VDIAG_EN = 5.5V 30 µA
IIH, DIN Input current high-level for ENx VENx = 5.5V 30 µA
DIGITAL OUTPUT PIN CHARACTERISTICS
VLPM LPM low output voltage  ILPM = 2mA 0.4 V
VFLT FLT low output voltage  IFLT = 2mA 0.4 V
If using GND network, accuracy for this current limit setting is shifted from the table value