SNAS856A September   2024  – March 2025 REF80

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Thermal Information
    4. 6.4 Recommended Operating Conditions
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Heater
      2. 7.3.2 Buried Zener Reference
  9. Parameter Measurement Information
    1. 8.1 Long-Term Stability
    2. 8.2 Temperature Drift
    3. 8.3 Thermal Hysteresis
    4. 8.4 Noise Performance
      1. 8.4.1 1/f Noise
      2. 8.4.2 Broadband Noise
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Typical Application: Basic Voltage Reference Connection
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
        3. 9.2.1.3 Application Curve
      2. 9.2.2 Typical Application Circuits
        1. 9.2.2.1 Precision Voltage Divider Connection
        2. 9.2.2.2 Calibration Signal
    3. 9.3 Power Supply Recommendation
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Detailed Design Procedure

A bulk capacitor (0.1μF to 10μF) must be connected to the VDD, HEATP and HEATM (when not connected to GND) pins to improve transient response in the applications where the supply voltage can fluctuate. Connect an additional 0.1μF capacitor at VDD, HEATP and HEATM pins closer to the device to bypass high frequency supply noise.

A low ESR (maximum 400mΩ) capacitor of 1μF to 100μF must be connected to the REF_Z pin to provide stable output. For very low noise applications, special care must be taken with X7R and other MLCC capacitors due to the piezoelectric effect. More information on how the piezoelectric effect can be explored in systems can be found in Stress-induced outbursts: Microphonics in ceramic capacitors (Part 1) and Stress-induced outbursts: Microphonics in ceramic capacitors (Part 2). Designer must use C0G or film capacitors for noise sensitive applications. OP-STBL indicates that the on chip heater is regulating the temperature. Connect a pullup resistor of 10kΩ with suitable logic voltage on this pin. The transient start-up response of the REF80 is shown in REF80 Startup Behavior.