SNLS676A May   2022  – December 2025 DP83TC813R-Q1 , DP83TC813S-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Timing Diagrams
    8. 6.8 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Diagnostic Tool Kit
        1. 7.3.1.1 Signal Quality Indicator
        2. 7.3.1.2 Electrostatic Discharge Sensing
        3. 7.3.1.3 Time Domain Reflectometry
        4. 7.3.1.4 Voltage Sensing
        5. 7.3.1.5 BIST and Loopback Modes
          1. 7.3.1.5.1 Data Generator and Checker
          2. 7.3.1.5.2 xMII Loopback
          3. 7.3.1.5.3 PCS Loopback
          4. 7.3.1.5.4 Digital Loopback
          5. 7.3.1.5.5 Analog Loopback
          6. 7.3.1.5.6 Reverse Loopback
      2. 7.3.2 Compliance Test Modes
        1. 7.3.2.1 Test Mode 1
        2. 7.3.2.2 Test Mode 2
        3. 7.3.2.3 Test Mode 4
        4. 7.3.2.4 Test Mode 5
    4. 7.4 Device Functional Modes
      1. 7.4.1  Power Down
      2. 7.4.2  Reset
      3. 7.4.3  Standby
      4. 7.4.4  Normal
      5. 7.4.5  Sleep Ack
      6. 7.4.6  Sleep Request
      7. 7.4.7  Sleep Fail
      8. 7.4.8  Sleep
      9. 7.4.9  Wake-Up
      10. 7.4.10 TC10 System Example
      11. 7.4.11 Media Dependent Interface
        1. 7.4.11.1 100BASE-T1 Leader and 100BASE-T1 Follower Configuration
        2. 7.4.11.2 Auto-Polarity Detection and Correction
        3. 7.4.11.3 Jabber Detection
        4. 7.4.11.4 Interleave Detection
      12. 7.4.12 MAC Interfaces
        1. 7.4.12.1 Media Independent Interface
        2. 7.4.12.2 Reduced Media Independent Interface
        3. 7.4.12.3 Reduced Gigabit Media Independent Interface
        4. 7.4.12.4 Serial Gigabit Media Independent Interface
      13. 7.4.13 Serial Management Interface
        1. 7.4.13.1 Direct Register Access
        2. 7.4.13.2 Extended Register Space Access
        3. 7.4.13.3 Write Operation (No Post Increment)
        4. 7.4.13.4 Read Operation (No Post Increment)
        5. 7.4.13.5 Write Operation (Post Increment)
        6. 7.4.13.6 Read Operation (Post Increment)
    5. 7.5 Programming
      1. 7.5.1 Strap Configuration
      2. 7.5.2 LED Configuration
      3. 7.5.3 PHY Address Configuration
  9. Register Maps
    1. 8.1 Register Access Summary
    2. 8.2 DP83TC813 Registers
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Design Requirements
        1. 9.2.1.1 Physical Medium Attachment
          1. 9.2.1.1.1 Common-Mode Choke Recommendations
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
        1. 9.4.1.1 Signal Traces
        2. 9.4.1.2 Return Path
        3. 9.4.1.3 Metal Pour
        4. 9.4.1.4 PCB Layer Stacking
      2. 9.4.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Receiving Notification of Documentation Updates
    2. 10.2 Support Resources
    3. 10.3 Community Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Pin Configuration and Functions

Figure 5-1 DP83TC813S-Q1 RHF Package
28-Pin VQFN
Top View
Figure 5-2 DP83TC813R-Q1 RHF Package
28-Pin VQFN
Top View
Table 5-1 Pin Functions
PINSTATE(1)DESCRIPTION
NAME(2)NO.
MAC INTERFACE

RX_D3
RX_M

24S, PD, O

Receive Data: Symbols received on the cable are decoded and transmitted out of these pins synchronous to the rising edge of RX_CLK. The pin contains valid data when RX_DV is asserted. A data nibble, RX_D[3:0], is transmitted in MII and RGMII modes. 2 bits; RX_D[1:0], are transmitted in RMII mode. RX_D[3:2] are not used when in RMII mode.

If the PHY is bootstrapped to RMII Leader mode, a 50MHz clock reference is automatically outputted on RX_D3. This clock must be fed to the MAC.

RX_M / RX_P: Differential SGMII Data Output. These pins transmit data from the PHY to the MAC.

RX_D2
RX_P

25

RX_D1

26

RX_D0

27
RX_CLK28S, PD, O

Receive Clock: In MII and RGMII modes, the receive clock provides a 25MHz reference clock.

Unused in RMII and SGMII modes

RX_ER21S, PD, O

Receive Error: In MII and RMII modes, this pin indicates a receive error symbol has been detected within a received packet. In MII mode, RX_ER is asserted high synchronously to the rising edge of RX_CLK. In RMII mode, RX_ER is asserted high synchronously to the rising edge of the reference clock. This pin is not required to be used by the MAC in MII or RMII because the PHY automatically corrupts data on a receive error.

Unused in RGMII and SGMII modes

RX_DV
CRS_DV
RX_CTRL
22S, PD, O

Receive Data Valid: This pin indicates when valid data is presented on RX_D[3:0] for MII mode.

Carrier Sense Data Valid: This pin combines carrier sense and data valid into an asynchronous signal. When CRS_DV is asserted, data is presented on RX_D[1:0] in RMII mode.

RGMII Receive Control: Receive control combines receive data valid indication and receive error indication into a single signal. RX_DV is presented on the rising edge of RX_CLK and RX_ER is presented on the falling edge of RX_CLK.

Set register 0x0551 = 0x0000 to configure this pin as RX_DV, set register 0x0551 = 0x0010 (Default) to program this pin as CRS_DV.

Unused in SGMII mode

TX_CLK1PD, I, O

Transmit Clock: In MII mode, the transmit clock is a 25MHz output (50Ω Driver) and has constant phase referenced to the reference clock. In RGMII mode, this clock is sourced from the MAC layer to the PHY. A 25MHz clock must be provided (not required to have constant phase to the reference clock unless synchronous RGMII is enabled).

Unused in RMII and SGMII modes

TX_EN
TX_CTRL
2PD, I

Transmit Enable: In MII mode, transmit enable is presented prior to the rising edge of the transmit clock. TX_EN indicates the presence of valid data inputs on TX_D[3:0]. In RMII mode, transmit enable is presented prior to the rising edge of the reference clock. TX_EN indicates the presence of valid data inputs on TX_D[1:0].

RGMII Transmit Control: Transmit control combines transmit enable and transmit error indication into a single signal. TX_EN is presented prior to the rising edge of TX_CLK; TX_ER is presented prior to the falling edge of TX_CLK.

Unused in SGMII mode

TX_D33PD, I

Transmit Data: In MII and RGMII modes, the transmit data nibble, TX_D[3:0], is received from the MAC prior to the rising edge of TX_CLK. In RMII mode, TX_D[1:0] is received from the MAC prior to the rising edge of the reference clock. TX_D[3:2] are not used in RMII mode.

TX_M / TX_P: Differential SGMII Data Input. These pins receive data that is transmitted from the MAC to the PHY.

TX_D24

TX_D1
TX_P

5

TX_D0
TX_M

6
SERIAL MANAGEMENT INTERFACE
MDC9I

Management Data Clock: Synchronous clock to the MDIO serial management input and output data. This clock can be asynchronous to the MAC transmit and receive clocks.

MDIO8OD, IO

Management Data Input/Output: Bidirectional management data signal that can be sourced by the management station or the PHY. This pin requires a pullup resistor. In systems with multiple PHYs using same MDIO-MDC bus, a single pull-up resistor must be used on MDIO line.

Recommended to use a resistor between 2.2kΩ and 9kΩ.

MDIO/MDC Access is required to pass Open Alliance Compliance. See Section 7.3.2

CONTROL INTERFACE
INT10PU, OD, IO

Interrupt: Active-LOW output, which is asserted LOW when an interrupt condition occurs. This pin has a weak internal pullup. Register access is necessary to enable various interrupt triggers. Once an interrupt event flag is set, register access is required to clear the interrupt event. This pin can be configured as an Active-HIGH output using register 0x0011.

Interrupt status from Reg 12-13 is recommended to be read only when INT_N is LOW. This pin can also operate as Power-Down control where asserting this pin low puts the PHY in power down mode and asserting high puts the PHY in normal mode. This feature can also be enabled via register 0x0011.

RESET11PU, I

Reset: Active-LOW input, which initializes or reinitializes the PHY. Asserting this pin LOW for at least 1μs forces a reset process to occur. All internal registers reinitializes to the default states as specified for each bit in the Register Maps section. All bootstrap pins are resampled upon deassertion of reset.

WAKE16PD, I/O

WAKE: Active-HIGH input, which wakes the PHY from TC-10 SLEEP. Asserting this pin HIGH at power-up prevents the PHY from going to SLEEP. External 10kΩ pull down resistor can be used when implementing TC-10 circuit to prevent accidental wake-up. This pin can be directly tied to VSLEEP to wake the device.

INH17O, OD

INH: Active-HIGH output. This pin is Hi-Z when the PHY is in TC-10 SLEEP. This pin is HIGH for all other PHY states. External 2kΩ - 10kΩ pull down resistor must be used when implementing TC-10 circuit. If multiple devices are sharing INH pin, then a single pull down resistor must be used.

CLOCK INTERFACE
XI13I

Reference Clock Input (RMII): Reference clock 50MHz CMOS-level oscillator in RMII Follower mode. Reference clock 25MHz crystal or oscillator in RMII Leader mode.

Reference Clock Input (Other MAC Interfaces): Reference clock 25MHz crystal or oscillator input. The device supports either an external crystal resonator connected across pins XI and XO, or an external CMOS-level oscillator connected to pin XI only and XO left floating.

XO12O

Reference Clock Output: XO pin is used for crystal only. This pin must be left floating when a CMOS-level oscillator is connected to XI.

LED/GPIO INTERFACE
CLKOUT / LED_114IO

Clock Output: 25MHz reference clock in all modes except RMII Follower, which is 50MHz instead. This pin can be used as LED or GPIO via register configuration. Program register<0x045F>=0x000F and register<0x0453>=0x0003 to disable switching on clkout pin.

MEDIUM DEPENDENT INTERFACE
TRD_M20IO

Differential Transmit and Receive: Bidirectional differential signaling configured for 100BASE-T1 operation, IEEE 802.3bw compliant.

TRD_P19
POWER CONNECTIONS
VDDA18SUPPLY

Core Supply: 3.3V

Recommend using 0.47µF and 0.01µF ceramic decoupling capacitors; optional ferrite bead can also be used.

VDDIO7SUPPLY

IO Supply: 1.8V, 2.5V, or 3.3V

Recommend using ferrite bead 0.47µF, and 0.01µF ceramic decoupling capacitors.

VDDMAC23SUPPLY

Optional MAC Interface Supply: 1.8V, 2.5V, or 3.3V

Optional separate supply for MAC interface pins. This pin supplies power to the MAC interface pins and can be kept at a different voltage level as compared to other IO pins. Recommend using 0.47µF, and 0.01µF ceramic decoupling capacitors; optional ferrite bead. When separate VDDMAC is not required in the system then the pin must be connected to VDDIO. When connecting to VDDIO, 0.47µF can be removed.

VSLEEP15SUPPLY

VSLEEP Supply: 3.3V

Recommend using 0.1µF ceramic decoupling capacitors.

GROUNDDAPGROUND

Ground: This must always be connected to power ground.

Pin Type:
I = Input
O = Output
IO = Input/Output
OD = Open Drain
PD = Internal pulldown
PU = Internal pullup
S = Bootstrap configuration pin (all configuration pins have weak internal pullups or pulldowns)
When pins are unused, follow the recommended connection requirements provided in the table above. If pins do not have required termination, the pins can be left floating.
Table 5-2 Pin Domain
PIN NOPIN NAMEVOLTAGE DOMAIN
9MDCVDDIO
10INT_NVDDIO
11RESET_NVDDIO
12XOVDDIO
13XIVDDIO
14LED_1/GPIO_1VDDIO
16WAKEVSLEEP
17INHVSLEEP
19TRD_PVDDA
20TRD_MVDDA
21RX_ERVDDMAC
22RX_DV/CRS_DV/RX_CTRLVDDMAC
24RX_D3/RX_MVDDMAC
25RX_D2/RX_PVDDMAC
26RX_D1VDDMAC
27RX_D0VDDMAC
28RX_CLKVDDMAC
1TX_CLKVDDMAC
2TX_EN/TX_CTRLVDDMAC
3TX_D3VDDMAC
4TX_D2VDDMAC
5TX_D1/TX_PVDDMAC
6TX_D0/TX_MVDDMAC
8MDIOVDDIO
Table 5-3 Pin States - POWER-UP / RESET
PIN NOPIN
NAME
POWER-UP / RESET
PIN STATE (1)PULL TYPEPULL VALUE
(kΩ)
9MDCInonenone
10INTIPU9
11RESETIPU9
12XOOnonenone
13XIInonenone
15VSLEEPSUPPLYnonenone
16WAKEI/OPD455
17INHOD, Ononenone
18VDDASUPPLYnonenone
19TRD_PIOnonenone
20TRD_MIOnonenone
21RX_ERIPD6
22RX_DVIPD6
23VDDMACSUPPLYnonenone
24RX_D3IPD9
25RX_D2IPD9
26RX_D1IPD9
27RX_D0IPD9
28RX_CLKIPD9
1TX_CLKInonenone
2TX_ENInonenone
3TX_D3Inonenone
4TX_D2Inonenone
5TX_D1Inonenone
6TX_D0Inonenone
7VDDIOSUPPLYnonenone
8MDIOOD, IOnonenone
Table 5-4 Pin States - TC10 SLEEP
PIN NOPIN
NAME
TC10 SLEEP (All Supplies On)
PIN STATE (1)PULL TYPEPULL VALUE
(kΩ)
9MDCInonenone
10INTIPU9
11RESETIPU9
12XOOnonenone
13XIInonenone
15VSLEEPSUPPLYnonenone
16WAKEI/OPD455
17INHOD, Ononenone
18VDDASUPPLYnonenone
19TRD_PIOnonenone
20TRD_MIOnonenone
21RX_ERIPD6
22RX_DVIPD6
23VDDMACSUPPLYnonenone
24RX_D3IPD9
25RX_D2IPD9
26RX_D1IPD9
27RX_D0IPD9
28RX_CLKIPD9
1TX_CLKInonenone
2TX_ENInonenone
3TX_D3Inonenone
4TX_D2Inonenone
5TX_D1Inonenone
6TX_D0Inonenone
7VDDIOSUPPLYnonenone
8MDIOOD, IOnonenone
Table 5-5 Pin States - MAC ISOLATE and IEEE PWDN
PIN NOPIN
NAME
MAC ISOLATEIEEE PWDN
PIN STATE (1)PULL TYPEPULL VALUE
(kΩ)
PIN STATE (1)PULL TYPEPULL VALUE
(kΩ)
9MDCInonenoneInonenone
10INTOD, OPU9OD, OPU9
11RESETIPU9IPU9
12XOOnonenoneOnonenone
13XIInonenoneInonenone
15VSLEEPSUPPLYnonenoneSUPPLYnonenone
16WAKEIOPD455IOPD455
17INHOD, OnonenoneOD, Ononenone
18VDDASUPPLYnonenoneSUPPLYnonenone
19TRD_PIOnonenoneIOnonenone
20TRD_MIOnonenoneIOnonenone
21RX_ERIPD6IPD6
22RX_DVIPD6Ononenone
23VDDMACSUPPLYnonenoneSUPPLYnonenone
24RX_D3IPD9Ononenone
25RX_D2IPD9Ononenone
26RX_D1IPD9Ononenone
27RX_D0IPD9Ononenone
28RX_CLKIPD9Ononenone
1TX_CLKIPD9Inonenone
2TX_ENIPD9Inonenone
3TX_D3IPD9Inonenone
4TX_D2IPD9Inonenone
5TX_D1IPD9Inonenone
6TX_D0IPD9Inonenone
7VDDIOSUPPLYnonenoneSUPPLYnonenone
8MDIOOD, IOnonenoneOD, IOnonenone
Table 5-6 Pin States - MII and RGMII
PIN NOPIN
NAME
MIIRGMII
PIN STATE (1)PULL TYPEPULL VALUE
(kΩ)
PIN STATE (1)PULL TYPEPULL VALUE
(kΩ)
9MDCInonenoneInonenone
10INTOD, OPU9OD, OPU9
11RESETIPU9IPU9
12XOOnonenoneOnonenone
13XIInonenoneInonenone
15VSLEEPSUPPLYnonenoneSUPPLYnonenone
16WAKEIOPD455IOPD455
17INHOD, OnonenoneOD, Ononenone
18VDDASUPPLYnonenoneSUPPLYnonenone
19TRD_PIOnonenoneIOnonenone
20TRD_MIOnonenoneIOnonenone
21RX_EROnonenoneIPD6
22RX_DVOnonenoneOnonenone
23VDDMACSUPPLYnonenoneSUPPLYnonenone
24RX_D3OnonenoneOnonenone
25RX_D2OnonenoneOnonenone
26RX_D1OnonenoneOnonenone
27RX_D0OnonenoneOnonenone
28RX_CLKOnonenoneOnonenone
1TX_CLKOnonenoneInonenone
2TX_ENInonenoneInonenone
3TX_D3InonenoneInonenone
4TX_D2InonenoneInonenone
5TX_D1InonenoneInonenone
6TX_D0InonenoneInonenone
7VDDIOSUPPLYnonenoneSUPPLYnonenone
8MDIOOD, IOnonenoneOD, IOnonenone
Table 5-7 Pin States - RMII LEADER and RMII FOLLOWER
PIN NOPIN
NAME
RMII LEADERRMII

FOLLOWER

PIN STATE (1)PULL TYPEPULL VALUE
(kΩ)
PIN STATE (1)PULL TYPEPULL VALUE
(kΩ)
9MDCInonenoneInonenone
10INTOD, OPU9OD, OPU9
11RESETIPU9IPU9
12XOOnonenoneOnonenone
13XIInonenoneInonenone
15VSLEEPSUPPLYnonenoneSUPPLYnonenone
16WAKEIOPD455IOPD455
17INHOD, OnonenoneOD, Ononenone
18VDDASUPPLYnonenoneSUPPLYnonenone
19TRD_PIOnonenoneIOnonenone
20TRD_MIOnonenoneIOnonenone
21RX_EROnonenoneOnonenone
22RX_DVOnonenoneOnonenone
23VDDMACSUPPLYnonenoneSUPPLYnonenone
24RX_D3O, 50MHznonenoneIPD9
25RX_D2IPD9IPD9
26RX_D1OnonenoneOnonenone
27RX_D0OnonenoneOnonenone
28RX_CLKIPD9IPD9
1TX_CLKInonenoneInonenone
2TX_ENInonenoneInonenone
3TX_D3InonenoneInonenone
4TX_D2InonenoneInonenone
5TX_D1InonenoneInonenone
6TX_D0InonenoneInonenone
7VDDIOSUPPLYnonenoneSUPPLYnonenone
8MDIOOD, IOnonenoneOD, IOnonenone
Table 5-8 Pin States - SGMII
PIN NOPIN
NAME
SGMII
PIN STATE (1)PULL TYPEPULL VALUE
(kΩ)
9MDCInonenone
10INTOD, OPU9
11RESETIPU9
12XOOnonenone
13XIInonenone
15VSLEEPSUPPLYnonenone
16WAKEIOPD455
17INHOD, Ononenone
18VDDASUPPLYnonenone
19TRD_PIOnonenone
20TRD_MIOnonenone
21RX_ERIPD6
22RX_DVIPD6
23VDDMACSUPPLYnonenone
24RX_D3Ononenone
25RX_D2Ononenone
26RX_D1IPD9
27RX_D0IPD9
28RX_CLKIPD9
1TX_CLKInonenone
2TX_ENInonenone
3TX_D3Inonenone
4TX_D2Inonenone
5TX_D1Inonenone
6TX_D0Inonenone
7VDDIOSUPPLYnonenone
8MDIOOD, IOnonenone
Type: I = Input
O = Output
IO = Input/Output
OD = Open Drain
PD = Internal pulldown
PU = Internal pullup