SNVA994A February   2022  – March 2023 LM5157 , LM5157-Q1 , LM51571-Q1 , LM5158 , LM5158-Q1 , LM51581 , LM51581-Q1

 

  1.   1
  2.   Trademarks
  3. 1Introduction
  4. 2Example Application
  5. 3Calculations and Component Selection
    1. 3.1 Switching Frequency
    2. 3.2 Transformer Selection
      1. 3.2.1 Maximum Duty Cycle and Turns Ratio Selection
      2. 3.2.2 Primary Winding Inductance Selection
    3. 3.3 Slope Compensation Check
    4. 3.4 Diode Selection
    5. 3.5 Output Capacitor Selection
    6. 3.6 Input Capacitor Selection
    7. 3.7 UVLO Resistor Selection
    8. 3.8 Control Loop Compensation
      1. 3.8.1 Crossover Frequency (fcross) Selection
      2. 3.8.2 RCOMP Selection
      3. 3.8.3 CCOMP Selection
      4. 3.8.4 CHF Selection
  6. 4Component Selection Summary
    1. 4.1 Application Circuit
    2. 4.2 Bill of Materials
  7. 5Small Signal Frequency Analysis
    1. 5.1 Flyback Regulator Modulator Modeling
    2. 5.2 Compensation Modeling
  8. 6Revision History

Compensation Modeling

These equations model a type II compensation network implemented using a transconductance error amplifier.

Table 5-2 Compensation Modeling Equations
Simplified FormulaComprehensive Formula
Feedback Equations
Feedback Transfer Function
Equation 36. V^COMP(s)V^LOAD(s)=-AFB1+sωZ_EAs×1+ sωP_EA
Feedback DC Gain
Equation 37. AFB=RFBB×gmRFBB+RFBT×CCOMP
Equation 38. AFB=RFBB×gmRFBB+RFBT×CCOMP+CHF
Low Frequency Zero
Equation 39. ωZ_EA=1RCOMP×CCOMP
Equation 40. ωZ_EA=1RCOMP×CCOMP
High Frequency Pole
Equation 41. ωP_EA=1RCOMP×CHF
Equation 42. ωP_EA=CCOMP+CHFRCOMP×CCOMP×CHF
Mid-band Gain
Equation 43. GMID=RCOMP×RRFBB×gmRFBB+RFBT
Equation 44. GMID=CCOMP×RCOMP×RRFBB×gmCCOMP+CHF×RFBB+RFBT
  1. gm is the transconductance of the error amplifier, 2mA/V