SWRA667 January   2020 CC1312PSIP , CC1312R , CC1314R10 , CC1352P , CC1352P7 , CC1352R , CC2642R , CC2642R-Q1 , CC2652P , CC2652R , CC2652R7 , CC2652RB , CC2652RSIP

 

  1.   Cryptographic Performance and Energy Efficiency on SimpleLink™ CC13x2/CC26x2 Wireless MCUs
    1.     Trademarks
    2. 1 Abbreviations and Acronyms
    3. 2 Introduction
    4. 3 Benefits of Cryptographic Acceleration in Embedded Security Solutions
    5. 4 TI Drivers for SimpleLink MCUs
      1. 4.1 Power Management Overview
      2. 4.2 Return Behavior
        1. 4.2.1 Runtime Overhead
      3. 4.3 Efficient Power Management
    6. 5 CC13x2/CC26x2 Crypto Peripherals
      1. 5.1 AES and Hash Crypto Accelerator
      2. 5.2 Public Key Accelerator
        1. 5.2.1 ECDH Power Management Driver Example
      3. 5.3 TRNG
    7. 6 Benchmarks
      1. 6.1 AES and Hash Crypto Accelerator Based Drivers
        1. 6.1.1 AES CBC
        2. 6.1.2 AES CCM
        3. 6.1.3 AES GCM
        4. 6.1.4 AES CTR DRBG
        5. 6.1.5 SHA-224
        6. 6.1.6 SHA-256
        7. 6.1.7 SHA-384
        8. 6.1.8 SHA-512
      2. 6.2 PKA Engine Based Drivers
        1. 6.2.1 ECDH
        2. 6.2.2 ECDSA
        3. 6.2.3 ECJPAKE
      3. 6.3 TRNG Based Drivers
        1. 6.3.1 TRNG
    8. 7 Conclusion
    9. 8 References
    10.     Appendix: Plots of Blocking vs Polling Performance

ECJPAKE

ECJPAKE is the elliptic curve cryptography (ECC) (see Reference [13]) variant of the Password Authenticated Key Exchange by Juggling (J-PAKE) algorithm. The ECJPAKE benchmark consists of only one operation: running the entire key exchange. ECJPAKE is always used in its entirety and with a specific sequence of sub-operations. The benchmark therefore runs both the client and server sides of the ECJPAKE algorithm on the same device. The resulting time is then divided in half.

The benchmarks were run using the NIST-P256 curve. Private key and private v generation before round one of the exchange is not considered by the benchmark.

Table 16. ECJPAKE Benchmark Results

Duration HW (ms) Duration SW mbed TLS (ms) Duration Improvement Average Current HW (mA) Average Current SW mbed TLS (mA) Energy Efficiency Improvement
1012.5 12485 12.3 1.67 3.10 22.9