SWRA825 January   2025 IWR6843 , LP87745-Q1

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Introduction
    1. 1.1 Regulatory Needs for Electro-Sensitive Protective Equipment (ESPE)
    2. 1.2 Different Types of Electro-Sensitive Protective Equipment (ESPE)
  5. 2Advantages of Radar Sensors in Industrial Applications
  6. 3Safety Concept Evaluation/Analysis
    1. 3.1 System Requirements
      1. 3.1.1 Stationary Use Case
      2. 3.1.2 Mobile Use Case
    2. 3.2 Considerations for Sensing Architectures
      1. 3.2.1 System Level Architecture
        1. 3.2.1.1 Bi-Static With Spatial Diversity
        2. 3.2.1.2 Co-Located Bi-Static (Two Sensor Products)
        3. 3.2.1.3 Co-Located Bi-Static (Single Sensor Product, Dual IWR6843)
        4. 3.2.1.4 Mono-Static (Single Sensor Product, Single IWR6843)
        5. 3.2.1.5 Summary
      2. 3.2.2 Latent Fault Monitoring
    3. 3.3 Sensor Level Architecture
      1. 3.3.1 Sensor Level Architecture for CAT 2
      2. 3.3.2 Sensor Level Architecture for Cat 3
  7. 4IEC TS 61496-5 Functional Test Results
  8. 5Other Considerations
    1. 5.1 Vibrations
    2. 5.2 Clock
  9. 6Conclusion
  10. 7References

Co-Located Bi-Static (Single Sensor Product, Dual IWR6843)

A single radar sensor contains two integrated IWR6843 radar chips.

 Co-Located Bi-Static
                    Setup Figure 3-9 Co-Located Bi-Static Setup

The benefit is that it simplifies purchasing and deployment as it is a single product. But it has a higher bill of materials (BoM) costs due to the dual-chip configuration.

New Dependent Fault Injectors (DFI) could be the shared power resource failures (for example, power supply issues affecting both chips). One mitigation strategy could be to ensure the radar sensor enters a safe state when power is lost.