TIDUF27A February   2025  – March 2025 AMC131M03 , MSPM0G1507

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Key System Specifications
    2. 1.2 End Equipment
    3. 1.3 Electricity Meter
    4. 1.4 Power Quality Meter, Power Quality Analyzer
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
      1. 2.2.1 Voltage Measurement Analog Front End
      2. 2.2.2 Analog Front End for Current Measurement
      3. 2.2.3 XDS110 Emulator
      4. 2.2.4 Bluetooth® Data Transmission
      5. 2.2.5 Bluetooth® Connection Between Two Modules
      6. 2.2.6 Bluetooth® to UART Connection
      7. 2.2.7 Magnetic Tamper Detection With TMAG5273 Linear 3D Hall-Effect Sensor
    3. 2.3 Highlighted Products
      1. 2.3.1  MSPM0G3507
      2. 2.3.2  AMC131M03
      3. 2.3.3  CDC6C
      4. 2.3.4  RES60A-Q1
      5. 2.3.5  TPS3702
      6. 2.3.6  TPD4E05U06
      7. 2.3.7  ISOUSB111
      8. 2.3.8  LMK1C1104
      9. 2.3.9  MSP432E401Y
      10. 2.3.10 TPS709
      11. 2.3.11 TMAG5273
  9. 3Hardware, Software, Testing Requirements, and Test Results
    1. 3.1 Hardware Requirements
      1. 3.1.1 Clocking System
        1. 3.1.1.1 BAW Oscillator
        2. 3.1.1.2 Crystal Oscillator
        3. 3.1.1.3 PWM
        4. 3.1.1.4 Clock Buffers
      2. 3.1.2 SPI Bus Configuration
      3. 3.1.3 Jumper Settings for LED and UART
    2. 3.2 Software Requirements
      1. 3.2.1 UART for PC GUI Communication
      2. 3.2.2 Direct Memory Access (DMA)
      3. 3.2.3 ADC Setup
      4. 3.2.4 Calibration
    3. 3.3 Test Setup
      1. 3.3.1 Connections to the Test Setup
      2. 3.3.2 Power Supply Options and Jumper Settings
        1.       51
      3. 3.3.3 Cautions and Warnings
    4. 3.4 Test Results
      1. 3.4.1 Electricity Meter Metrology Accuracy Results
      2. 3.4.2 Radiated Emissions Performance
  10. 4Design and Documentation Support
    1. 4.1 Design Files
      1. 4.1.1 Schematics
      2. 4.1.2 BOM
      3. 4.1.3 PCB Layout Recommendations
        1. 4.1.3.1 Layout Prints
    2. 4.2 Tools and Software
    3. 4.3 Documentation Support
    4. 4.4 Support Resources
    5. 4.5 Trademarks
  11. 5About the Author
  12. 6Revision History

Clocking System

This reference design comes with three different options to provide the necessary clock input at the LMK1C1104 to drive the four identical in-phase clock signals CLKIN1 through CLKIN4, making sure all ADCs run and collect data samples synchronized to each other. Both BAW and XTAL configurations were successfully tested, while the PWM option was not tested.

The MSPM0G3507 MCU is configured to have the CPU clock (MCLK) set at 79.87MHz and the M0_CLKOUT clock signal to all AMC131M03 devices is set to 8.192MHz. The external 16.384MHz or 32.768MHz XTAL, which is feeding the PLL module and is being multiplied and divided with specific factors, generates an MCLK frequency (the CPU clock speed) of 79.87MHz. An internal 32.768kHz LFOSC is used as the clock source for the auxiliary RTC clock (RTCCLK) of the device.