TIDUF72 August   2024

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Key System Specifications
    2. 1.2 End Equipment
    3. 1.3 Electricity Meter
    4. 1.4 Power Quality Meter, Power Quality Analyzer
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
      1. 2.2.1 Magnetic Tamper Detection With TMAG5273 Linear 3D Hall-Effect Sensor
      2. 2.2.2 Analog Inputs of Standalone ADCs
      3. 2.2.3 Voltage Measurement Analog Front End
      4. 2.2.4 Analog Front End for Current Measurement
    3. 2.3 Highlighted Products
      1. 2.3.1 AMC131M03
      2. 2.3.2 ADS131M02
      3. 2.3.3 MSPM0G1106
      4. 2.3.4 TMAG5273
      5. 2.3.5 ISO6731
      6. 2.3.6 TRS3232E
      7. 2.3.7 TPS709
  9. 3Hardware, Software, Testing Requirements, and Test Results
    1. 3.1 Hardware Requirements
      1. 3.1.1  Software Requirements
      2. 3.1.2  UART for PC GUI Communication
      3. 3.1.3  Direct Memory Access (DMA)
      4. 3.1.4  ADC Setup
      5. 3.1.5  Foreground Process
      6. 3.1.6  Formulas
        1. 3.1.6.1 Standard Metrology Parameters
        2. 3.1.6.2 Power Quality Formulas
      7. 3.1.7  Background Process
      8. 3.1.8  Software Function per_sample_dsp()
      9. 3.1.9  Voltage and Current Signals
      10. 3.1.10 Pure Waveform Samples
      11. 3.1.11 Frequency Measurement and Cycle Tracking
      12. 3.1.12 LED Pulse Generation
      13. 3.1.13 Phase Compensation
    2. 3.2 Test Setup
      1. 3.2.1 Power Supply Options and Jumper Setting
      2. 3.2.2 Electricity Meter Metrology Accuracy Testing
      3. 3.2.3 Viewing Metrology Readings and Calibration
        1. 3.2.3.1 Calibrating and Viewing Results From PC
      4. 3.2.4 Calibration and FLASH Settings for MSPM0+ MCU
      5. 3.2.5 Gain Calibration
      6. 3.2.6 Voltage and Current Gain Calibration
      7. 3.2.7 Active Power Gain Calibration
      8. 3.2.8 Offset Calibration
      9. 3.2.9 Phase Calibration
    3. 3.3 Test Results
      1. 3.3.1 Energy Metrology Accuracy Results
  10. 4Design and Documentation Support
    1. 4.1 Design Files
      1. 4.1.1 Schematics
      2. 4.1.2 BOM
      3. 4.1.3 PCB Layout Recommendations
      4. 4.1.4 Layout Prints
      5. 4.1.5 Altium Project
      6. 4.1.6 Gerber Files
      7. 4.1.7 Assembly Drawings
    2. 4.2 Tools and Software
    3. 4.3 Documentation Support
    4. 4.4 Support Resources
    5. 4.5 Trademarks
  11. 5About the Authors

ADS131M02

The ADS131M02 device is a two-channel, simultaneously-sampling, 24-bit, 2nd-order delta-sigma (ΔΣ), analog-to-digital converter (ADC) that offers wide dynamic range, and internal calibration features making the device well-designed for energy metering, power quality, and protection applications. The ADC inputs can be directly interfaced to a resistor-divider network, a transformer to measure voltage or current, or a Rogowski coil to measure current.

The individual ADC channels can be independently configured depending on the sensor input. A low-noise, programmable gain amplifier (PGA) provides gains ranging from 1 to 128 to amplify low-level signals. Additionally, these devices integrate channel-to-channel phase alignment and offset and gain calibration registers to help remove signal chain errors. A low-drift, 1.2V reference is integrated into the device reducing printed circuit board (PCB) area. cyclic redundancy check (CRC) options can be individually enabled on the data input, data output, and register map to provide communication integrity. Figure 2-7 shows a block diagram of this device.

TIDA-010944 ADS131M02 Functional Block
                    Diagram Figure 2-7 ADS131M02 Functional Block Diagram