TIDUFC2 April   2025

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Key System Specifications
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
      1. 2.2.1 High-Voltage Generator Circuit
      2. 2.2.2 Low-Voltage Switching Mode Power Supply
      3. 2.2.3 Sitara™ MCU AM2431 Reset and Power Rail Monitoring Circuit
      4. 2.2.4 Clock Generator
      5. 2.2.5 CMOS to LVDS Driver
      6. 2.2.6 Layout Guidance
    3. 2.3 Highlighted Products
      1. 2.3.1 TX7516
      2. 2.3.2 TMU9832
      3. 2.3.3 AM2431
  9. 3Hardware, Software, Testing Requirements, and Test Results
    1. 3.1 Hardware Requirements
      1. 3.1.1 TIDA-010256 PCB Overview
      2. 3.1.2 TIDA-010256 Connector Settings
    2. 3.2 Software Requirements
    3. 3.3 Test Setup
    4. 3.4 Test Results
      1. 3.4.1 High-Voltage Power Supply Output Ripple
      2. 3.4.2 Output Waveform
      3. 3.4.3 Thermal Test
  10. 4Design and Documentation Support
    1. 4.1 Design Files
      1. 4.1.1 Schematics
      2. 4.1.2 BOM
    2. 4.2 Tools and Software
    3. 4.3 Documentation Support
    4. 4.4 Support Resources
    5. 4.5 Trademarks

High-Voltage Generator Circuit

Figure 2-2 shows the high-voltage topology. This topology generates the ±80V and ±40V power supply from the 12V bus power supply to power TX7516 through a SEPIC and Cuk circuit. This section mainly introduces SEPIC circuit design procedures (±80V power rail) and key device selection.


TIDA-010256 High-Voltage Power Supply Topology

Figure 2-2 High-Voltage Power Supply Topology
Table 2-1 High-Voltage Power Supply Formulas
PARAMETERSFORMULARESULT
Duty Cycle
Dmax=Vout+VdVinmin+Vout+Vd
87.3%

where

  • Vd ≅ 0.7V
  • Vinmin = 11.7V
Switch FrequencyAccording to the maximum duty cycle vs frequency graph of the LM5155x 2.2MHz Wide Input Nonsynchronous Boost, SEPIC, Flyback Controller data sheet, the switching frequency can be as low as 100kHz.150kHz, 100kHz
Inductor
L1=L2=L3=Vinmin×Vinmax×Dmax2×Iout×Vout×0.4×fSW=42.55μH. n = 0.88
IL1peak=Iout×Vout+Vd×(1+0.42)Vinmin×n=2.81A
IL2peak=Iout×(1+0.42)=0.36A
L1 = 47μH,
DCR = 0.0459Ω,
and Isat = 3.8AL2 = 47μH,
DCR = 0.095Ω,
and Isat = 1.45A
Power MOSFET Q1
Vpeak=Vin+Vout+Vd=12+100+0.7=112.7V
IQ1RMS=Iout×Vout+Vmin+Vd×Vout+VdVinmin2=2.21A
PQ1=IQ1RMS2×RDS(on)×Dmax+Vinmin+Vout×IQ1peak×QGD×fswIG=0.249W
FDMC86240

150V, 4.6A MOSFET

TJ(MAX) = 150℃ > TJ

where

  • RDS(on) = 0.0447Ω
  • QGD= 2.3nC
  • IG = 1.5A
  • TJ= PQ1 × RθJA + TA = 0.249 × 53 + 25 = 38.197°C
Diode D1, D2
VreverseVinmax+Voutmax=92V
Ipeak IL1peak+IL2peak=3.17A
Pd=Iout×Vd=0.21W
MBRS4201T3G Schottky, 200V, 4A

where

  • Vd = 0.7V
Coupling Capacitor Cs1, Cs2
Icprmsmax=Iout×Vout+VdVinmin=0.788A

If target ripple in Cs < 0.8V, then according to the following equations:

cp Iout×DmaxCs×fSW+ESR×max(Il1peak,  Il2peak)
Cs must beIout×Dmaxcp×fSW=2.182μF
ESRcpmax(Il1peak,  Il2peak)=285mΩ
Cs1 = Cs2 = 2.2μF
Output Capacitor
Icout,RMS=Iout×Dmax1-Dmax=0.787A

If target ripple in Cout < Vout × 1%, then according to the following equations:

Cout must beIout×Dmaxcout×fSW=2.18μF
ESRcoutIl1peak+Il2peak=252mΩ
18122C105JAT2A × 2 200V
Input Capacitor
Cinmin=PoutVsupplymin×(1-D)Vsupply×fSW=6.95μF
10μF, 25Vdc

where

  • ΔVsupply = 0.25V
Compensation

RFBB = 11kΩ, RFBT = 618kΩ

FRHPZ=(1-Dmax)2×Vout2πDmax×L2×0.5×Iout=33.37kHz
FR=12πL2×Cs=15.651kHz
Fcross=FR6=2.608kHz
Rcomp=2π×Cout×Rs×Vout2×Fcross×(1+Dmax)Gcomp×gm×Vinmin×Dmax=2×π×2.2×10-6×0.01×80×80×2608×1.8730.142×2mAV×11.7×0.873=1.49kΩ
FZ_EA=Fcross×1π×Cout×VoutIout=1189.55Hz
Ccomp=Cout×VoutIout4πRcomp2×Fcross=89.79nF
CHF=Ccomp×L2Ccomp×1-Dmax2×VoutIout×Rcomp-L2=7.39nF
R18 = 1.5kΩ

C26 = 100nF

C25 = 6.8nF

Rs = 10mΩ

TIDA-010256 80V High-Voltage Power Supply Schematic

Figure 2-3 80V High-Voltage Power Supply Schematic

The ±40V high-voltage output channel calculation is also referenced from the table. In addition, for more convenient regulation of the output voltage, a 10-bit DAC53401 is used to control the positive voltage feedback loop of the SEPIC. Figure 2-4 shows the DAC trim circuit for a ±80V output channel.


TIDA-010256 DACx3401 Power Supply Control

Figure 2-4 DACx3401 Power Supply Control

The DAC53401 features a Hi-Z power-down mode that is set by default at power-up, unless the device is programmed otherwise using the non-volatile memory. When the digital-to-analog converter (DAC) output is at Hi-Z, the current through R3 is zero and SEPIC is set to the nominal output voltage, also to avoid no current flowing through R3 during power up of the DAC. Use Equation 1 to calculate the value of R3 assuming a current limit of 10μA.

Equation 1. R3=VDACmax-VFBIset=10001024×1.21×3-110μA=25.45k

where

  • DAC code is limited to 1000
  • Internal reference = 1.21V
  • Gain = 3
  • R3 select 27kΩ

Based on Equation 2, assuming the output code of the DAC is 0 when RB is 11kΩ, RT can be calculated as 618kΩ. When the DAC code is 1024, the calculated output voltage becomes negative; therefore, restrict the maximum value of DAC code to 924, which yields an output voltage of approximately 5.09V.

Equation 2. VOUT=1+RTRB+RTR3×Vref-RTR3×Code1024×VDACref×Gain