TIDUFE2 October   2025

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Key System Specifications
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
      1. 2.2.1 Fault Detection and Protection
      2. 2.2.2 Theory of Operation - Parallel LDOs Using Op Amps
      3. 2.2.3 Theory of Operation - Parallel LDOs Using Ballast Resistors
    3. 2.3 Highlighted Products
      1. 2.3.1 TPS7B7702-Q1, Automotive, Dual-Channel Antenna Low Dropout (LDO) Regulator With Current Sense
      2. 2.3.2 OPAx388 Automotive, Precision, Zero-Drift, Zero-Crossover, True Rail-to-Rail, Input/Output Operational Amplifiers
      3. 2.3.3 LMV321A-Q1 Automotive Low-Voltage Rail-to-Rail Output Operational Amplifier
  9. 3Hardware, Testing Requirements, and Test Results
    1. 3.1 Hardware Requirements
    2. 3.2 Test Setup
    3. 3.3 Test Results - Parallel LDOs Using Op Amps
      1. 3.3.1 Short to Battery
      2. 3.3.2 Load Transient Response
      3. 3.3.3 Current Limit
      4. 3.3.4 Start-Up
      5. 3.3.5 Shutdown
      6. 3.3.6 Line Transient
      7. 3.3.7 PSRR
      8. 3.3.8 Thermal Performance
      9. 3.3.9 Thermal Limit Protection
    4. 3.4 Test Results - Parallel LDOs Using Ballast Resistors
      1. 3.4.1 Short to Battery
      2. 3.4.2 Load Transient Response
      3. 3.4.3 Current Limit
      4. 3.4.4 Start-Up
      5. 3.4.5 Line Transient
      6. 3.4.6 Thermal Performance
      7. 3.4.7 Thermal Limit Protection
    5. 3.5 Comparison of Results Between Parallel LDO Techniques
      1. 3.5.1 VLOAD vs ILOAD
      2. 3.5.2 PSRR
  10. 4Design and Documentation Support
    1. 4.1 Design Files
      1. 4.1.1 Schematics
      2. 4.1.2 BOM
      3. 4.1.3 Layout Prints
    2. 4.2 Tools
    3. 4.3 Documentation Support
    4. 4.4 Support Resources
    5. 4.5 Trademarks
  11. 5About the Author

About the Author

STEPHEN ZIEL is the Applications and Validation Manager for Low Voltage LDOs and became an elected Member, Group Technical Staff (MGTS) in 2023. Previous to working at TI, Stephen was a principal engineer at a large aerospace and defense company where he worked on all aspects of power electronics spanning 1mW to 1.5kW. Stephen holds over 18 years experience in power system requirements development and architecture design, power supply design, and engineering management leading large teams of power engineers. Stephen received a BSEE and MSEE from Michigan State University.