DDC264

ACTIVE

64-Channel, Current-Input Analog-to-Digital Converter

Product details

Number of input channels 64 Resolution (Bits) 20 Features Computed Tomography (CT) Operating temperature range (°C) 0 to 70 Interface type Serial Rating Catalog
Number of input channels 64 Resolution (Bits) 20 Features Computed Tomography (CT) Operating temperature range (°C) 0 to 70 Interface type Serial Rating Catalog
NFBGA (ZAW) 100 81 mm² 9 x 9
  • Single-Chip Solution to Directly Measure 64 Low-Level Currents
  • Proven High-Precision, True Integrating Architecture With 100% Charge Collection
  • Easy Upgrade for Existing DDC Family Applications
  • Very Low Power: 3 mW/channel
  • Extremely Linear: INL = ±0.025% of Reading ±1 ppm of FSR
  • Low Noise: 6.3 ppm of FSR
  • Adjustable Full-Scale Range
  • Adjustable Speed
    • Data Rates up to 6 kSPS With 20-bit Performance
    • Integration Times as low as 160 µs
  • Daisy-Chainable Serial Interface
  • In-Package Bypass Capacitors Simplify PCB Design
  • APPLICATIONS
    • CT Scanner DAS
    • Photodiode Sensors
    • X-Ray Detection Systems

All other trademarks are the property of their respective owners

  • Single-Chip Solution to Directly Measure 64 Low-Level Currents
  • Proven High-Precision, True Integrating Architecture With 100% Charge Collection
  • Easy Upgrade for Existing DDC Family Applications
  • Very Low Power: 3 mW/channel
  • Extremely Linear: INL = ±0.025% of Reading ±1 ppm of FSR
  • Low Noise: 6.3 ppm of FSR
  • Adjustable Full-Scale Range
  • Adjustable Speed
    • Data Rates up to 6 kSPS With 20-bit Performance
    • Integration Times as low as 160 µs
  • Daisy-Chainable Serial Interface
  • In-Package Bypass Capacitors Simplify PCB Design
  • APPLICATIONS
    • CT Scanner DAS
    • Photodiode Sensors
    • X-Ray Detection Systems

All other trademarks are the property of their respective owners

The DDC264 is a 20-bit, 64-channel, current-input analog-to-digital (A/D) converter. It combines both current-to-voltage and A/D conversion so that 64 separate low-level current output devices, such as photodiodes, can be directly connected to its inputs and digitized.

For each of the 64 inputs, the DDC264 uses the proven dual switched integrator front-end. This configuration allows for continuous current integration: while one integrator is being digitized by the onboard A/D converter, the other is integrating the input current. This architecture provides both a very stable offset and a loss-less collection of the input current. Adjustable integration times range from 160 µs to 1 s, allowing currents from fAs to µAs to be continuously measured with outstanding precision.

The DDC264 has a serial interface designed for daisy-chaining in multi-device systems. Simply connect the output of one device to the input of the next to create the chain. Common clocking feeds all the devices in the chain so that the digital overhead in a multi-DDC264 system is minimal.

The DDC264 uses a 5-V analog supply and a 2.7-V to 3.6-V digital supply. Bypass capacitors within the DDC264 package help minimize the external component requirements. Operating over the temperature range of 0°C to 70°C, the DDC264 100-pin NFBGA package is offered in two versions: the DDC264C for low-power applications, and the DDC264CK when higher speeds are required.

The DDC264 is a 20-bit, 64-channel, current-input analog-to-digital (A/D) converter. It combines both current-to-voltage and A/D conversion so that 64 separate low-level current output devices, such as photodiodes, can be directly connected to its inputs and digitized.

For each of the 64 inputs, the DDC264 uses the proven dual switched integrator front-end. This configuration allows for continuous current integration: while one integrator is being digitized by the onboard A/D converter, the other is integrating the input current. This architecture provides both a very stable offset and a loss-less collection of the input current. Adjustable integration times range from 160 µs to 1 s, allowing currents from fAs to µAs to be continuously measured with outstanding precision.

The DDC264 has a serial interface designed for daisy-chaining in multi-device systems. Simply connect the output of one device to the input of the next to create the chain. Common clocking feeds all the devices in the chain so that the digital overhead in a multi-DDC264 system is minimal.

The DDC264 uses a 5-V analog supply and a 2.7-V to 3.6-V digital supply. Bypass capacitors within the DDC264 package help minimize the external component requirements. Operating over the temperature range of 0°C to 70°C, the DDC264 100-pin NFBGA package is offered in two versions: the DDC264C for low-power applications, and the DDC264CK when higher speeds are required.

Download View video with transcript Video

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 3
Type Title Date
* Data sheet DDC264 64-Channel, Current-Input Analog-to-Digital Converter datasheet (Rev. D) PDF | HTML 12 Dec 2016
Analog Design Journal Selecting a multichannel ultra-low-current measurement IC PDF | HTML 18 Mar 2022
EVM User's guide DDC264EVM User Guide 20 Mar 2011

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

DDC264EVM — DDC264 Evaluation Module

The DDC264EVM provides an easy-to-use platform for evaluating the DDC264 charge digitizing A/D converters. A PC interface board and four DDC264 devices are included along with software that makes analysis and testing of these devices manageable.

User guide: PDF
Simulation model

DDC264 IBIS Model

SBAM191.ZIP (15 KB) - IBIS Model
Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Package Pins Download
NFBGA (ZAW) 100 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Recommended products may have parameters, evaluation modules or reference designs related to this TI product.

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos