Automotive 4-ch, 1.65-V to 3.6-V buffers with 3-state outputs

SN74LVC125A-Q1

ACTIVE

Product details

Technology Family LVC Supply voltage (Min) (V) 1.65 Supply voltage (Max) (V) 3.6 Number of channels (#) 4 IOL (Max) (mA) 24 ICC (Max) (uA) 20 IOH (Max) (mA) -24 Input type Standard CMOS Output type 3-State Features Balanced outputs, Very high speed (tpd 5-10ns), Over-voltage tolerant inputs Rating Automotive
Technology Family LVC Supply voltage (Min) (V) 1.65 Supply voltage (Max) (V) 3.6 Number of channels (#) 4 IOL (Max) (mA) 24 ICC (Max) (uA) 20 IOH (Max) (mA) -24 Input type Standard CMOS Output type 3-State Features Balanced outputs, Very high speed (tpd 5-10ns), Over-voltage tolerant inputs Rating Automotive
SOIC (D) 14 52 mm² 8.65 x 6 TSSOP (PW) 14 32 mm² 5 x 6.4
  • Qualified for Automotive Applications
  • Operates From 1.65 V to 3.6 V
  • Specified From -40°C to 125°C
  • Inputs Accept Voltages to 5.5 V
  • Max tpd of 4.8 ns at 3.3 V
  • Typical VOLP (Output Ground Bounce) <0.8 V at VCC = 3.3 V, TA = 25°C
  • Typical VOHV (Output VOH Undershoot) >2 V at VCC = 3.3 V, TA = 25°C
  • Latch-Up Performance Exceeds 250 mA Per JESD 17
  • ESD Protection Exceeds JESD 22
    • 2000-V Human-Body Model (A114-A)
    • 200-V Machine Model (A115-A)
    • 1000-V Charged-Device Model (C101)

abc

  • Qualified for Automotive Applications
  • Operates From 1.65 V to 3.6 V
  • Specified From -40°C to 125°C
  • Inputs Accept Voltages to 5.5 V
  • Max tpd of 4.8 ns at 3.3 V
  • Typical VOLP (Output Ground Bounce) <0.8 V at VCC = 3.3 V, TA = 25°C
  • Typical VOHV (Output VOH Undershoot) >2 V at VCC = 3.3 V, TA = 25°C
  • Latch-Up Performance Exceeds 250 mA Per JESD 17
  • ESD Protection Exceeds JESD 22
    • 2000-V Human-Body Model (A114-A)
    • 200-V Machine Model (A115-A)
    • 1000-V Charged-Device Model (C101)

abc

This quadruple bus buffer gate is designed for 1.65-V to 3.6-V VCC operation.

The SN74LVC125A features independent line drivers with 3-state outputs. Each output is disabled when the associated output-enable (OE) input is high.

To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of this device as a translator in a mixed 3.3-V/5-V system environment.

This quadruple bus buffer gate is designed for 1.65-V to 3.6-V VCC operation.

The SN74LVC125A features independent line drivers with 3-state outputs. Each output is disabled when the associated output-enable (OE) input is high.

To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of this device as a translator in a mixed 3.3-V/5-V system environment.

Download

Technical documentation

star = Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 28
Type Title Date
* Data sheet Quadruple Bus Buffer Gate With 3-State Outputs datasheet (Rev. B) 09 Apr 2008
Application note Implications of Slow or Floating CMOS Inputs (Rev. E) 26 Jul 2021
Selection guide Little Logic Guide 2018 (Rev. G) 06 Jul 2018
Selection guide Logic Guide (Rev. AB) 12 Jun 2017
Application note How to Select Little Logic (Rev. A) 26 Jul 2016
Application note Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 02 Dec 2015
User guide LOGIC Pocket Data Book (Rev. B) 16 Jan 2007
More literature Design Summary for WCSP Little Logic (Rev. B) 04 Nov 2004
Application note Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 08 Jul 2004
Application note Selecting the Right Level Translation Solution (Rev. A) 22 Jun 2004
User guide Signal Switch Data Book (Rev. A) 14 Nov 2003
Application note Use of the CMOS Unbuffered Inverter in Oscillator Circuits 06 Nov 2003
More literature Logic Cross-Reference (Rev. A) 07 Oct 2003
User guide LVC and LV Low-Voltage CMOS Logic Data Book (Rev. B) 18 Dec 2002
Application note Texas Instruments Little Logic Application Report 01 Nov 2002
Application note TI IBIS File Creation, Validation, and Distribution Processes 29 Aug 2002
More literature Standard Linear & Logic for PCs, Servers & Motherboards 13 Jun 2002
Application note 16-Bit Widebus Logic Families in 56-Ball, 0.65-mm Pitch Very Thin Fine-Pitch BGA (Rev. B) 22 May 2002
Application note Power-Up 3-State (PU3S) Circuits in TI Standard Logic Devices 10 May 2002
More literature STANDARD LINEAR AND LOGIC FOR DVD/VCD PLAYERS 27 Mar 2002
Application note Migration From 3.3-V To 2.5-V Power Supplies For Logic Devices 01 Dec 1997
Application note Bus-Interface Devices With Output-Damping Resistors Or Reduced-Drive Outputs (Rev. A) 01 Aug 1997
Application note CMOS Power Consumption and CPD Calculation (Rev. B) 01 Jun 1997
Application note LVC Characterization Information 01 Dec 1996
Application note Input and Output Characteristics of Digital Integrated Circuits 01 Oct 1996
Application note Live Insertion 01 Oct 1996
Design guide Low-Voltage Logic (LVC) Designer's Guide 01 Sep 1996
Application note Understanding Advanced Bus-Interface Products Design Guide 01 May 1996

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

14-24-LOGIC-EVM — Generic Logic EVM Supporting 14 through 24 Pin PW, DB, D, DW, NS, DYY, and DGV Packages

This EVM is designed to support any logic device that has a D, DW, DB, NS, PW, DYY or DGV package in a 14 to 24 pin count.

In stock
Limit: 5
Simulation model

SN74LVC125A Behavioral SPICE Model

SCAM111.ZIP (7 KB) - PSpice Model
Reference designs

TIDA-00733 — Automotive 8-Channel Class-D Amplifier with 2.1 MHz Switching Power Supply Reference Design

TIDA-00733 is a reference design for an eight-channel, Class-D amplifier that is capable of driving 2-Ω loads and an off-battery step-down power supply with 5-V and  3.3-V outputs. The amplifier design provides audio inputs for each audio channel. A  high-performance audio (...)
Reference designs

TIDA-00794 — Thermal Protection Reference Design of IGBT Modules for HEV/EV Traction Inverters

The TIDA-00794 reference design is a temp sensing solution for IGBT thermal protection in HEV/EV traction inverter system. It monitors the IGBT temperature via the NTC thermistor integrated inside the IGBT module. It provides thermal shut down to the IGBT gate drivers once the NTC thermistor (...)
Package Pins Download
SOIC (D) 14 View options
TSSOP (PW) 14 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos