Product details

Technology Family LVC Supply voltage (Min) (V) 1.65 Supply voltage (Max) (V) 5.5 Number of channels (#) 2 IOL (Max) (mA) 32 ICC (Max) (uA) 10 IOH (Max) (mA) -32 Input type Schmitt-Trigger Output type Push-Pull Features Balanced outputs, Very high speed (tpd 5-10ns), Partial power down (Ioff), Over-voltage tolerant inputs Rating Catalog
Technology Family LVC Supply voltage (Min) (V) 1.65 Supply voltage (Max) (V) 5.5 Number of channels (#) 2 IOL (Max) (mA) 32 ICC (Max) (uA) 10 IOH (Max) (mA) -32 Input type Schmitt-Trigger Output type Push-Pull Features Balanced outputs, Very high speed (tpd 5-10ns), Partial power down (Ioff), Over-voltage tolerant inputs Rating Catalog
DSBGA (YZP) 6 2 mm² .927 x 1.427 SOT-23 (DBV) 6 5 mm² 2.9 x 1.6 SOT-SC70 (DCK) 6 4 mm² 2 x 2.1 USON (DRY) 6 1 mm² 1.5 x 1 X2SON (DSF) 6 1 mm² 1 x 1
  • Schmitt-Trigger inputs provide hysteresis
  • Available in the Texas Instruments NanoFree™ Package
  • Supports 5-V VCC Operation
  • Inputs Accept Voltages to 5.5 V
  • Max tpd of 5.4 ns at 3.3 V
  • Low Power Consumption, 10-µA Max ICC
  • ±24-mA Output Drive at 3.3 V
  • Typical VOLP (Output Ground Bounce)
    < 0.8 V at VCC = 3.3 V, TA = 25°C
  • Typical VOHV (Output VOH Undershoot)
    > 2 V at VCC = 3.3 V, TA = 25°C
  • Ioff Supports Live Insertion, Partial-Power-Down Mode
    Operation and Back-Drive Protection
  • Latch-Up Performance Exceeds 100 mA Per JESD 78,
    Class II
  • ESD Protection Exceeds JESD 22
    • 2000-V Human-Body Model
    • 1000-V Charged-Device Model
  • Schmitt-Trigger inputs provide hysteresis
  • Available in the Texas Instruments NanoFree™ Package
  • Supports 5-V VCC Operation
  • Inputs Accept Voltages to 5.5 V
  • Max tpd of 5.4 ns at 3.3 V
  • Low Power Consumption, 10-µA Max ICC
  • ±24-mA Output Drive at 3.3 V
  • Typical VOLP (Output Ground Bounce)
    < 0.8 V at VCC = 3.3 V, TA = 25°C
  • Typical VOHV (Output VOH Undershoot)
    > 2 V at VCC = 3.3 V, TA = 25°C
  • Ioff Supports Live Insertion, Partial-Power-Down Mode
    Operation and Back-Drive Protection
  • Latch-Up Performance Exceeds 100 mA Per JESD 78,
    Class II
  • ESD Protection Exceeds JESD 22
    • 2000-V Human-Body Model
    • 1000-V Charged-Device Model

This dual Schmitt-Trigger buffer is designed for 1.65-V to 5.5-V VCC operation.

The SN74LVC2G17 device contains two buffers and performs the Boolean function Y = A. The device functions as two independent buffers, but because of Schmitt action, it may have different input threshold levels for positive-going (VT+) and negative-going (VT–) signals.

NanoFree™ package technology is a major breakthrough in IC packaging concepts, using the die as the package.

This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

This dual Schmitt-Trigger buffer is designed for 1.65-V to 5.5-V VCC operation.

The SN74LVC2G17 device contains two buffers and performs the Boolean function Y = A. The device functions as two independent buffers, but because of Schmitt action, it may have different input threshold levels for positive-going (VT+) and negative-going (VT–) signals.

NanoFree™ package technology is a major breakthrough in IC packaging concepts, using the die as the package.

This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

Download

Technical documentation

star = Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 29
Type Title Date
* Data sheet SN74LVC2G17 Dual Schmitt-Trigger Buffer datasheet (Rev. N) 25 Jan 2015
Application note Implications of Slow or Floating CMOS Inputs (Rev. E) 26 Jul 2021
Selection guide Little Logic Guide 2018 (Rev. G) 06 Jul 2018
Selection guide Logic Guide (Rev. AB) 12 Jun 2017
Application note How to Select Little Logic (Rev. A) 26 Jul 2016
Application note Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 02 Dec 2015
Application note Understanding Schmitt Triggers 21 Sep 2011
User guide LOGIC Pocket Data Book (Rev. B) 16 Jan 2007
More literature Design Summary for WCSP Little Logic (Rev. B) 04 Nov 2004
Application note Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 08 Jul 2004
Application note Selecting the Right Level Translation Solution (Rev. A) 22 Jun 2004
User guide Signal Switch Data Book (Rev. A) 14 Nov 2003
Application note Use of the CMOS Unbuffered Inverter in Oscillator Circuits 06 Nov 2003
More literature Logic Cross-Reference (Rev. A) 07 Oct 2003
User guide LVC and LV Low-Voltage CMOS Logic Data Book (Rev. B) 18 Dec 2002
Application note Texas Instruments Little Logic Application Report 01 Nov 2002
Application note TI IBIS File Creation, Validation, and Distribution Processes 29 Aug 2002
More literature Standard Linear & Logic for PCs, Servers & Motherboards 13 Jun 2002
Application note 16-Bit Widebus Logic Families in 56-Ball, 0.65-mm Pitch Very Thin Fine-Pitch BGA (Rev. B) 22 May 2002
Application note Power-Up 3-State (PU3S) Circuits in TI Standard Logic Devices 10 May 2002
More literature STANDARD LINEAR AND LOGIC FOR DVD/VCD PLAYERS 27 Mar 2002
Application note Migration From 3.3-V To 2.5-V Power Supplies For Logic Devices 01 Dec 1997
Application note Bus-Interface Devices With Output-Damping Resistors Or Reduced-Drive Outputs (Rev. A) 01 Aug 1997
Application note CMOS Power Consumption and CPD Calculation (Rev. B) 01 Jun 1997
Application note LVC Characterization Information 01 Dec 1996
Application note Input and Output Characteristics of Digital Integrated Circuits 01 Oct 1996
Application note Live Insertion 01 Oct 1996
Design guide Low-Voltage Logic (LVC) Designer's Guide 01 Sep 1996
Application note Understanding Advanced Bus-Interface Products Design Guide 01 May 1996

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

5-8-LOGIC-EVM — Generic logic EVM supporting 5 through 8 pin DCK, DCT, DCU, DRL, and DBV packages

Flexible EVM designed to support any device that has a DCK, DCT, DCU, DRL, or DBV package in a 5 to 8 pin count.
In stock
Limit: 5
Simulation model

SN74LVC2G17 IBIS Model (Rev. D)

SCEM253D.ZIP (43 KB) - IBIS Model
Simulation model

SN74LVC2G17 Behavioral SPICE Model

SCEM615.ZIP (7 KB) - PSpice Model
Reference designs

TIDA-01634 — Multi-MHz GaN Power Stage Reference Design for High-Speed DC/DC Converters

This reference design implements a multi-MHz power stage design based on the LMG1210 half-bridge GaN driver and GaN power High Electron Mobility Transistors (HEMTs). With highly efficient switches and flexible dead-time adjustment, this design can significantly improve power density while (...)
Reference designs

TIDA-00403 — Ultrasonic Distance Measurement using the TLV320AIC3268 miniDSP CODEC Reference Design

The TIDA-00403 reference design uses off-the-shelf EVMs for ultrasonic distance measurement solutions using algorithms within the TLV320AIC3268 miniDSP. In conjunction with TI’s PurePath Studio design suite, a robust and user configurable ultrasonic distance measurement system can be designed (...)
Reference designs

TIDM-RM46XDRV8301KIT — Three-Phase BLDC / PMSM Motor Drive with High-Performance Microcontrollers Reference Design

This reference design describes a motor-control evaluation kit for spinning 3-phase brushless DC and brushless AC (BLAC) often referred to as permanent-magnet synchronous (PMSM) motors with example of sensorless field oriented / vector control (FOC). The implementation leverages the DRV8301 (...)
Reference designs

TIDM-SOLAR-DCDC — C2000™ Solar DC/DC Converter with Maximum Power Point Tracking (MPPT)

This design is a digitally-controlled, solar DC/DC converter with maximum power point tracking (MPPT), for use in central or string solar inverters. It is a companion to TIDM-SOLAR-ONEPHINV, a grid-tied, single phase, DC/AC inverter. Together, TIDM-SOLAR-DCDC and TIDM-SOLAR-ONEPHINV comprise (...)
Package Pins Download
DSBGA (YZP) 6 View options
SC70 (DCK) 6 View options
SON (DRY) 6 View options
SON (DSF) 6 View options
SOT-23 (DBV) 6 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos