Product details


We are not able to display this information. Please refer to the product data sheet.

Package | Pins | Size

PDIP (N) 16 181 mm² 19.3 x 9.4 SOIC (D) 16 59 mm² 9.9 x 6 open-in-new Find other Other interfaces


  • Designed for Use With the TL852 in Sonar Ranging Modules Like the SN28827
  • Operates With Single Supply
  • Accurate Clock Output for External Use
  • Synchronous 4-Bit Gain Control Output
  • Internal 1.2-V Level Detector for Receive
  • TTL-Compatible
  • Interfaces to Electrostatic or Piezoelectric Transducers

open-in-new Find other Other interfaces


The TL851 is an economical digital I2L ranging control integrated circuit designed for use with the Texas Instruments TL852 sonar ranging receiver integrated circuit.

The TL851 is designed for distance measurement from six inches to 35 feet. The device has an internal oscillator that uses a low-cost external ceramic resonator. With a simple interface and a 420-kHz ceramic resonator, the device will drive a 50-kHz electrostatic transducer.

The device cycle begins when Initiate (INIT) is taken to the high logic level. There must be at least 5 ms from initial power-up (VCC) to the first initiate signal in order for all the device internal latches to reset and for the ceramic-resonator-controlled oscillator to stabilize. The device will transmit a burst of 16 pulses each time INIT is taken high.

The oscillator output (OSC) is enabled by INIT. The oscillator frequency is the ceramic resonator frequency divided by 8.5 for the first 16 cycles (during transmit) and then the oscillator frequency changes to the ceramic resonator frequency divided by 4.5 for the remainder of the device cycle.

When used with an external 420-kHz ceramic resonator, the device internal blanking disables the receive input (REC) for 3.8 ms after initiate to exclude false receive inputs that may be caused by transducer ringing. The internal blanking feature also eliminates echos from objects closer than 1.3 feet from the transducer. If it is necessary to detect objects closer than 1.3 feet, then the internal blanking may be shortened by taking the blanking inhibit (BINH) high, enabling the receive input. The blanking input (BLNK) may be used to disable the receive input and reset ECHO to a low logic level at any time during the device cycle for selective echo exclusion or for a multiple-echo mode of operation.

The device provides a synchronous 4-bit gain control output (12 steps) designed to control the gain of the TL852 sonar ranging receiver integrated circuit. The digital gain control waveforms are shown in Figure 2 with the nominal transition times from INIT listed in the Gain Control Output Table.

The threshold of the internal receive level detector is 1.2 V. The TL851 operates over a supply voltage range of 4.5 V to 6.8 V and is characterized for operation from 0°C to 40°C.

open-in-new Find other Other interfaces

Technical documentation

= Top documentation for this product selected by TI
No results found. Please clear your search and try again. View all 1
Type Title Date
* Datasheet Sonar Ranging Control datasheet Mar. 01, 1988

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Design tools & simulation

PSpice® for TI design and simulation tool
PSPICE-FOR-TI — PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
  • Leverages Cadence PSpice Technology
  • Preinstalled library with a suite of digital models to enable worst-case timing analysis
  • Dynamic updates ensure you have access to most current device models
  • Optimized for simulation speed without loss of accuracy
  • Supports simultaneous analysis of multiple products
  • (...)
SPICE-based analog simulation program
TINA-TI TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
document-generic User guide

CAD/CAE symbols

Package Pins Download
PDIP (N) 16 View options
SOIC (D) 16 View options

Ordering & quality

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​


Related videos