Product details

DSP type 1 C66x DSP (max) (MHz) 750, 850 CPU 32-/64-bit Operating system DSP/BIOS Ethernet MAC 10/100/1000 PCIe 2 PCIe Gen2 Rating Catalog Operating temperature range (°C) -40 to 100
DSP type 1 C66x DSP (max) (MHz) 750, 850 CPU 32-/64-bit Operating system DSP/BIOS Ethernet MAC 10/100/1000 PCIe 2 PCIe Gen2 Rating Catalog Operating temperature range (°C) -40 to 100
FCBGA (CZH) 625 441 mm² 21 x 21
  • One TMS320C66x DSP Core Subsystem (CorePac)
    • C66x Fixed- and Floating-Point CPU Core: Up to 850 MHz for C6654 and 600 MHz for C6652
  • Multicore Shared Memory Controller (MSMC)
    • Memory Protection Unit for DDR3_EMIF
  • Multicore Navigator
    • 8192 Multipurpose Hardware Queues with Queue Manager
    • Packet-Based DMA for Zero-Overhead Transfers
  • Peripherals
    • PCIe Gen2 (C6654 Only)
      • Single Port Supporting 1 or 2 Lanes
      • Supports up to 5 GBaud Per Lane
    • Gigabit Ethernet (GbE) Subsystem (C6654 Only)
      • One SGMII Port (C6654 Only)
      • Supports 10-, 100-, and 1000-Mbps Operation
    • 32-Bit DDR3 Interface
      • DDR3-1066
      • 4GB of Addressable Memory Space
    • 16-Bit EMIF
    • Universal Parallel Port
      • Two Channels of 8 Bits or 16 Bits Each
      • Supports SDR and DDR Transfers
    • Two UART Interfaces
    • Two Multichannel Buffered Serial Ports (McBSPs)
    • I2C Interface
    • 32 GPIO Pins
    • SPI Interface
    • Semaphore Module
    • Eight 64-Bit Timers
    • Two On-Chip PLLs
  • Commercial Temperature:
    • 0°C to 85°C
  • Extended Temperature:
    • –40°C to 100°C
  • One TMS320C66x DSP Core Subsystem (CorePac)
    • C66x Fixed- and Floating-Point CPU Core: Up to 850 MHz for C6654 and 600 MHz for C6652
  • Multicore Shared Memory Controller (MSMC)
    • Memory Protection Unit for DDR3_EMIF
  • Multicore Navigator
    • 8192 Multipurpose Hardware Queues with Queue Manager
    • Packet-Based DMA for Zero-Overhead Transfers
  • Peripherals
    • PCIe Gen2 (C6654 Only)
      • Single Port Supporting 1 or 2 Lanes
      • Supports up to 5 GBaud Per Lane
    • Gigabit Ethernet (GbE) Subsystem (C6654 Only)
      • One SGMII Port (C6654 Only)
      • Supports 10-, 100-, and 1000-Mbps Operation
    • 32-Bit DDR3 Interface
      • DDR3-1066
      • 4GB of Addressable Memory Space
    • 16-Bit EMIF
    • Universal Parallel Port
      • Two Channels of 8 Bits or 16 Bits Each
      • Supports SDR and DDR Transfers
    • Two UART Interfaces
    • Two Multichannel Buffered Serial Ports (McBSPs)
    • I2C Interface
    • 32 GPIO Pins
    • SPI Interface
    • Semaphore Module
    • Eight 64-Bit Timers
    • Two On-Chip PLLs
  • Commercial Temperature:
    • 0°C to 85°C
  • Extended Temperature:
    • –40°C to 100°C

The C6654 and C6652 are high performance fixed- and floating-point DSPs that are based on TI’s KeyStone multicore architecture. Incorporating the new and innovative C66x DSP core, this device can run at a core speed of up to 850 MHz for C6654 and 600 MHz for C6652. For developers of a broad range of applications, both C6654 and C6652 DSPs enable a platform that is power-efficient and easy to use. In addition, the C6654 and C6652 DSPs are fully backward compatible with all existing C6000™ family of fixed- and floating-point DSPs.

TI’s KeyStone architecture provides a programmable platform integrating various subsystems (C66x cores, memory subsystem, peripherals, and accelerators) and uses several innovative components and techniques to maximize intradevice and interdevice communication that lets the various DSP resources operate efficiently and seamlessly. Central to this architecture are key components such as Multicore Navigator that allows for efficient data management between the various device components. The TeraNet is a nonblocking switch fabric enabling fast and contention-free internal data movement. The multicore shared memory controller allows access to shared and external memory directly without drawing from switch fabric capacity.

For fixed-point use, the C66x core has 4× the multiply accumulate (MAC) capability of C64x+ cores. In addition, the C66x core integrates floating-point capability and the per-core raw computational performance is an industry-leading 27.2 GMACS per core and 13.6 GFLOPS per core (@850 MHz frequency). The C66x core can execute 8 single precision floating-point MAC operations per cycle and can perform double- and mixed-precision operations and is IEEE 754 compliant. The C66x core incorporates 90 new instructions (compared to the C64x+ core) targeted for floating-point and vector math oriented processing. These enhancements yield sizeable performance improvements in popular DSP kernels used in signal processing, mathematical, and image acquisition functions. The C66x core is backward code-compatible with TI’s previous generation C6000 fixed- and floating-point DSP cores, ensuring software portability and shortened software development cycles for applications migrating to faster hardware.

The C6654 and C6652 DSPs integrate a large amount of on-chip memory. In addition to 32KB of L1 program and data cache, 1024KB of dedicated memory can be configured as mapped RAM or cache. All L2 memories incorporate error detection and error correction. For fast access to external memory, this device includes a 32-bit DDR-3 external memory interface (EMIF) running at a rate of 1066 MHz and has ECC DRAM support.

This family supports a number of high-speed standard interfaces including PCI Express Gen2 and Gigabit Ethernet (PCIe and Gigabit Ethernet are not supported on the C6652). This family of DSPs also includes I2C, UART, Multichannel Buffered Serial Port (McBSP), Universal Parallel Port (uPP), and a 16-bit asynchronous EMIF, along with general-purpose CMOS IO.

The C6654 and C6652 devices have a complete set of development tools, which includes: an enhanced C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution.

TI’s KeyStone Multicore Architecture provides a high performance structure for integrating RISC and DSP cores with application-specific coprocessors and I/O. The KeyStone architecture is the first of its kind that provides adequate internal bandwidth for nonblocking access to all processing cores, peripherals, coprocessors, and I/O. This internal bandwidth is achieved with four main hardware elements: Multicore Navigator, TeraNet, and Multicore Shared Memory Controller.

Multicore Navigator is an innovative packet-based manager that controls 8192 queues. When tasks are allocated to the queues, Multicore Navigator provides hardware-accelerated dispatch that directs tasks to the appropriate available hardware. The packet-based system on a chip (SoC) uses the two Tbps capacity of the TeraNet switched central resource to move packets. The Multicore Shared Memory Controller lets processing cores access shared memory directly without drawing from the capacity of TeraNet, so packet movement cannot be blocked by memory access.

The C6654 and C6652 are high performance fixed- and floating-point DSPs that are based on TI’s KeyStone multicore architecture. Incorporating the new and innovative C66x DSP core, this device can run at a core speed of up to 850 MHz for C6654 and 600 MHz for C6652. For developers of a broad range of applications, both C6654 and C6652 DSPs enable a platform that is power-efficient and easy to use. In addition, the C6654 and C6652 DSPs are fully backward compatible with all existing C6000™ family of fixed- and floating-point DSPs.

TI’s KeyStone architecture provides a programmable platform integrating various subsystems (C66x cores, memory subsystem, peripherals, and accelerators) and uses several innovative components and techniques to maximize intradevice and interdevice communication that lets the various DSP resources operate efficiently and seamlessly. Central to this architecture are key components such as Multicore Navigator that allows for efficient data management between the various device components. The TeraNet is a nonblocking switch fabric enabling fast and contention-free internal data movement. The multicore shared memory controller allows access to shared and external memory directly without drawing from switch fabric capacity.

For fixed-point use, the C66x core has 4× the multiply accumulate (MAC) capability of C64x+ cores. In addition, the C66x core integrates floating-point capability and the per-core raw computational performance is an industry-leading 27.2 GMACS per core and 13.6 GFLOPS per core (@850 MHz frequency). The C66x core can execute 8 single precision floating-point MAC operations per cycle and can perform double- and mixed-precision operations and is IEEE 754 compliant. The C66x core incorporates 90 new instructions (compared to the C64x+ core) targeted for floating-point and vector math oriented processing. These enhancements yield sizeable performance improvements in popular DSP kernels used in signal processing, mathematical, and image acquisition functions. The C66x core is backward code-compatible with TI’s previous generation C6000 fixed- and floating-point DSP cores, ensuring software portability and shortened software development cycles for applications migrating to faster hardware.

The C6654 and C6652 DSPs integrate a large amount of on-chip memory. In addition to 32KB of L1 program and data cache, 1024KB of dedicated memory can be configured as mapped RAM or cache. All L2 memories incorporate error detection and error correction. For fast access to external memory, this device includes a 32-bit DDR-3 external memory interface (EMIF) running at a rate of 1066 MHz and has ECC DRAM support.

This family supports a number of high-speed standard interfaces including PCI Express Gen2 and Gigabit Ethernet (PCIe and Gigabit Ethernet are not supported on the C6652). This family of DSPs also includes I2C, UART, Multichannel Buffered Serial Port (McBSP), Universal Parallel Port (uPP), and a 16-bit asynchronous EMIF, along with general-purpose CMOS IO.

The C6654 and C6652 devices have a complete set of development tools, which includes: an enhanced C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution.

TI’s KeyStone Multicore Architecture provides a high performance structure for integrating RISC and DSP cores with application-specific coprocessors and I/O. The KeyStone architecture is the first of its kind that provides adequate internal bandwidth for nonblocking access to all processing cores, peripherals, coprocessors, and I/O. This internal bandwidth is achieved with four main hardware elements: Multicore Navigator, TeraNet, and Multicore Shared Memory Controller.

Multicore Navigator is an innovative packet-based manager that controls 8192 queues. When tasks are allocated to the queues, Multicore Navigator provides hardware-accelerated dispatch that directs tasks to the appropriate available hardware. The packet-based system on a chip (SoC) uses the two Tbps capacity of the TeraNet switched central resource to move packets. The Multicore Shared Memory Controller lets processing cores access shared memory directly without drawing from the capacity of TeraNet, so packet movement cannot be blocked by memory access.

Download View video with transcript Video

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 62
Type Title Date
* Data sheet TMS320C6652 and TMS320C6654 Fixed and Floating-Point Digital Signal Processor datasheet (Rev. E) PDF | HTML 04 Sep 2019
* Errata TMS320C6652/54/55/57 Multicore Fixed and Floating-Point DSP SR1.0 (Rev. C) 19 May 2016
Application note DDR3 Design Requirements for KeyStone Devices (Rev. D) PDF | HTML 07 Jul 2022
Application note Keystone Error Detection and Correction EDC ECC (Rev. A) 25 Jun 2021
Application note How to Migrate CCS 3.x Projects to the Latest CCS (Rev. A) PDF | HTML 19 May 2021
User guide SYS/BIOS (TI-RTOS Kernel) User's Guide (Rev. V) 01 Jun 2020
Application note Using DSPLIB FFT Implementation for Real Input and Without Data Scaling PDF | HTML 11 Jun 2019
Application note Keystone Bootloader Resources and FAQ 29 May 2019
Application note Keystone Multicore Device Family Schematic Checklist PDF | HTML 17 May 2019
Application note Hardware Design Guide for KeyStone Devices (Rev. D) 21 Mar 2019
Application note KeyStone I DDR3 interface bring-up 06 Mar 2019
Application note Thermal Design Guide for DSP and Arm Application Processors (Rev. B) 14 Aug 2017
User guide Phase-Locked Loop (PLL) for KeyStone Devices User's Guide (Rev. I) 26 Jul 2017
Application note KeyStone I DDR3 Initialization (Rev. E) 28 Oct 2016
Product overview TMS320C6657/55/54 Power efficient high performance for process-intensive apps (Rev. A) 23 May 2016
Application note SERDES Link Commissioning on KeyStone I and II Devices 13 Apr 2016
Application note TI DSP Benchmarking 13 Jan 2016
Application note Plastic Ball Grid Array [PBGA] Application Note (Rev. B) 13 Aug 2015
User guide Enhanced Direct memory Access 3 (EDMA3) for KeyStone Devices User's Guide (Rev. B) 06 May 2015
User guide Multicore Navigator (CPPI) for KeyStone Architecture User's Guide (Rev. H) PDF | HTML 09 Apr 2015
White paper TI’s processors leading the way in embedded analytics 03 Mar 2015
User guide DDR3 Memory Controller for KeyStone I Devices User's Guide (Rev. E) 20 Jan 2015
Application note TI Keystone DSP PCIe SerDes IBIS-AMI Models 09 Oct 2014
User guide Power Sleep Controller (PSC) for KeyStone Devices User's Guide (Rev. C) 04 Sep 2014
More literature KeyStone Lab Manual - Training 05 Jun 2014
User guide System Analyzer User's Guide (Rev. F) 18 Nov 2013
User guide PCI Express (PCIe) for KeyStone Devices User's Guide (Rev. D) 30 Sep 2013
User guide DSP Bootloader for KeyStone Architecture User's Guide (Rev. C) 15 Jul 2013
White paper Accelerating high-performance computing development with Desktop Linux SDK 08 Jul 2013
User guide C66x CorePac User's Guide (Rev. C) 28 Jun 2013
User guide Memory Protection Unit (MPU) for KeyStone Devices User's Guide (Rev. A) 28 Jun 2013
Product overview OpenMP Programming for TMS320C66x Multicore DSPs (Rev. A) 05 Nov 2012
Application note SerDes Implementation Guidelines for KeyStone I Devices 31 Oct 2012
Product overview TMS320C66x high-performance multicore DSPs for video surveillance 06 Sep 2012
User guide TMS320C6000 Assembly Language Tools v 7.4 User's Guide (Rev. W) 21 Aug 2012
User guide TMS320C6000 Optimizing Compiler v 7.4 User's Guide (Rev. U) 21 Aug 2012
User guide Ethernet Media Access Controller (EMAC) User's Guide for KeyStone Devices 12 Jul 2012
User guide Universal Parallel Port (uPP) for KeyStone Architecture User's Guide 11 Jun 2012
User guide Multichannel Buffered Serial Port (MCBSP) User's Guide for KeyStone Devices 25 May 2012
White paper Leveraging multicore processors for machine vision applications 09 May 2012
User guide Serial Peripheral Interface (SPI) for KeyStone Devices User’s Guide (Rev. A) 30 Mar 2012
User guide Chip Interrupt Controller (CIC) for KeyStone Devices User's Guide (Rev. A) 27 Mar 2012
White paper Superior performance at breakthrough size, weight & power 26 Mar 2012
User guide 64-Bit Timer (Timer64) for KeyStone Devices User's Guide (Rev. A) 22 Mar 2012
Application note PCIe Use Cases for KeyStone Devices 13 Dec 2011
User guide Multicore Shared Memory Controller (MSMC) for KeyStone Devices User's Guide (Rev. A) 15 Oct 2011
Application note Introduction to TMS320C6000 DSP Optimization 06 Oct 2011
User guide Debug and Trace for KeyStone I Devices User's Guide (Rev. A) 22 Sep 2011
User guide Inter-Integrated Circuit (I2C) for KeyStone Devices User's Guide 02 Sep 2011
White paper KeyStone Multicore SoC Tool Suite: one platform for all needs 17 Jun 2011
User guide External Memory Interface (EMIF16) for KeyStone Devices User's Guide (Rev. A) 24 May 2011
White paper Software and Hardware Design Challenges Due to Dynamic Raw NAND Market 19 May 2011
Application note TMS320C66x DSP Generation of Devices (Rev. A) 25 Apr 2011
White paper KeyStone Memory Architecture White Paper (Rev. A) 21 Dec 2010
User guide C66x CPU and Instruction Set Reference Guide 09 Nov 2010
User guide C66x DSP Cache User's Guide 09 Nov 2010
Application note Clocking Design Guide for KeyStone Devices 09 Nov 2010
User guide General-Purpose Input/Output (GPIO) forKeyStone Devices User's Guide 09 Nov 2010
Application note Optimizing Loops on the C66x DSP 09 Nov 2010
User guide Universal Asynchronous Receiver/Transmitter (UART) for KeyStone Devices UG 09 Nov 2010
User guide Flip Chip Ball Grid Array Package Reference Guide (Rev. A) 23 May 2005
Application note AN-1281 Bumped Die (Flip Chip) Packages (Rev. A) 01 May 2004

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

TMDSEVM6657 — TMS320C6657 Lite Evaluation Modules

The TMS3206657 Lite Evaluation Module (EVM), is an easy-to-use, cost-efficient development tool that helps developers quickly get started with designs using the C6657 or C6655 or C6654 family of DSPs. The EVM includes an on-board, single C6657 processor with robust connectivity options that allows (...)

Not available on TI.com
Daughter card

SHELD-3P-DSP-SOMS — Sheldon DSP-FPGA boards

Sheldon Instruments designs and manufactures DSP based, COTS data acquisition and control hardware for PCIe/PCI, PCI104e/PCI104, XMC/PMC, and CompactPCI systems, along with drivers and real time development software for a variety of applications and markets.

Learn more about Sheldon Instruments at (...)
Debug probe

TMDSEMU200-U — XDS200 USB Debug Probe

The XDS200 is a debug probe (emulator) used for debugging TI embedded devices.  The XDS200 features a balance of low cost with good performance as compared to the low cost XDS110 and the high performance XDS560v2.  It supports a wide variety of standards (IEEE1149.1, IEEE1149.7, SWD) in a (...)

Not available on TI.com
Debug probe

TMDSEMU560V2STM-U — XDS560™ software v2 system trace USB debug probe

The XDS560v2 is the highest performance of the XDS560™ family of debug probes and supports both the traditional JTAG standard (IEEE1149.1) and cJTAG (IEEE1149.7).  Note that it does not support serial wire debug (SWD).

All XDS debug probes support Core and System Trace in all ARM and DSP processors (...)

Not available on TI.com
Debug probe

TMDSEMU560V2STM-UE — XDS560v2 System Trace USB & Ethernet Debug Probe

The XDS560v2 is the highest performance of the XDS560™ family of debug probes and supports both the traditional JTAG standard (IEEE1149.1) and cJTAG (IEEE1149.7). Note that it does not support serial wire debug (SWD).

All XDS debug probes support Core and System Trace in all ARM and DSP processors (...)

Not available on TI.com
Software development kit (SDK)

PROCESSOR-SDK-C665X — Processor SDK for C665x Processors - TI-RTOS support

Processor SDK (Software Development Kit) is a unified software platform for TI embedded processors providing easy setup and fast out-of-the-box access to benchmarks and demos.  All releases of Processor SDK are consistent across TI’s broad portfolio, allowing developers to seamlessly (...)
Driver or library

MATHLIB — DSP Math Library for Floating Point Devices

The Texas Instruments math library is an optimized floating-point math function library for C programmers using TI floating point devices. These routines are typically used in computationally intensive real-time applications where optimal execution speed is critical. By using these routines instead (...)
Driver or library

SPRC264 — TMS320C5000/6000 Image Library (IMGLIB)

C5000/6000 Image Processing Library (IMGLIB) is an optimized image/video processing function library for C programmers. It includes C-callable general-purpose image/video processing routines that are typically used in computationally intensive real-time applications. With these routines, higher (...)
Driver or library

SPRC265 — TMS320C6000 DSP Library (DSPLIB)

TMS320C6000 Digital Signal Processor Library (DSPLIB) is a platform-optimized DSP function library for C programmers. It includes C-callable, general-purpose signal-processing routines that are typically used in computationally intensive real-time applications. With these routines, higher (...)
Driver or library

TELECOMLIB — Telecom and Media Libraries - FAXLIB, VoLIB and AEC/AER for TMS320C64x+ and TMS320C55x Processors

Voice Library - VoLIB provides components that, together, facilitate the development of the signal processing chain for Voice over IP applications such as infrastructure, enterprise, residential gateways and IP phones. Together with optimized implementations of ITU-T voice codecs, that can be (...)
IDE, configuration, compiler or debugger

CCSTUDIO Code Composer Studio™ integrated development environment (IDE)

Code Composer Studio is an integrated development environment (IDE) for TI's microcontrollers and processors. It comprises a suite of tools used to develop and debug embedded applications.  Code Composer Studio is available for download across Windows®, Linux® and macOS® (...)

Supported products & hardware

Supported products & hardware

This design resource supports most products in these categories.

Check the product details page to verify support.

Products
Automotive mmWave radar sensors
AWR1243 76-GHz to 81-GHz high-performance automotive MMIC AWR1443 Single-chip 76-GHz to 81-GHz automotive radar sensor integrating MCU and hardware accelerator AWR1642 Single-chip 76-GHz to 81-GHz automotive radar sensor integrating DSP and MCU AWR1843 Single-chip 76-GHz to 81-GHz automotive radar sensor integrating DSP, MCU and radar accelerator AWR1843AOP Single-chip 76-GHz to 81-GHz automotive radar sensor integrating antenna on package, DSP and MCU AWR2243 76-GHz to 81-GHz automotive second-generation high-performance MMIC AWR2944 Automotive, second-generation 76-GHz to 81-GHz high-performance SoC for corner and long-range radar AWR6443 Single-chip 60-GHz to 64-GHz automotive radar sensor integrating MCU and radar accelerator AWR6843 Single-chip 60-GHz to 64-GHz automotive radar sensor integrating DSP, MCU and radar accelerator AWR6843AOP Single-chip 60-GHz to 64-GHz automotive radar sensor integrating antenna on package, DSP and MCU AWRL1432 Single-chip low-power 76-GHz to 81-GHz automotive mmWave radar sensor AWRL6432 Single-chip low-power 57-GHz to 64-GHz automotive mmWave radar sensor
Industrial mmWave radar sensors
IWR1443 Single-chip 76-GHz to 81-GHz mmWave sensor integrating MCU and hardware accelerator IWR1642 Single-chip 76-GHz to 81-GHz mmWave sensor integrating DSP and MCU IWR1843 Single-chip 76-GHz to 81-GHz industrial radar sensor integrating DSP, MCU and radar accelerator IWR1843AOP Single-chip 76-GHz to 81-GHz industrial radar sensor integrating antenna on package, DSP and MCU IWR2243 76-GHz to 81-GHz industrial high-performance MMIC IWR6243 57-GHz to 64-GHz industrial high-performance MMIC IWR6443 Single-chip 60-GHz to 64-GHz intelligent mmWave sensor integrating MCU and hardware accelerator IWR6843 Single-chip 60-GHz to 64-GHz intelligent mmWave sensor integrating processing capability IWR6843AOP Single-chip 60-GHz to 64-GHz intelligent mmWave sensor with integrated antenna on package (AoP) IWRL1432 Single-chip low-power 76-GHz to 81-GHz industrial mmWave radar sensor IWRL6432 Single-chip low-power 57-GHz to 64-GHz industrial mmWave radar sensor
Arm Cortex-M0+ MCUs
MSPM0C1104 24 MHz Arm® Cortex®-M0+ MCU with 16-KB flash, 1-KB SRAM, 12-bit ADC MSPM0G1106 80MHz Arm M0+ MCU, 64KB Flash, 32KB SRAM, 2×12bit 4Msps ADC, op-amp MSPM0G1107 80MHz Arm M0+ MCU, 128KB Flash, 32KB SRAM, 2×12bit 4Msps ADC, op-amp MSPM0G1505 80MHz Arm M0+ MCU, 32KB Flash, 16KB SRAM, 2×12bit 4Msps ADC, DAC, 3×COMP, 3×op-amp, MATHACL MSPM0G1506 80MHz Arm M0+ MCU, 64KB Flash, 32KB SRAM, 2×12bit 4Msps ADC, DAC, 3×COMP, 3×op-amp, MATHACL MSPM0G1507 80MHz Arm M0+ MCU, 128KB Flash, 32KB SRAM, 2×12bit 4Msps ADC, DAC, 3×COMP, 3×op-amp, MATHACL MSPM0G3105 80MHz Arm M0+ MCU, 32KB Flash, 16KB SRAM, 2×12bit 4Msps ADC, op-amp, CAN-FD MSPM0G3106 80 MHz Arm® Cortex®-M0+ MCU with 64-KB Flash, 32-KB SRAM, ADC and CAN-FD MSPM0G3107 80MHz Arm M0+ MCU, 128KB Flash, 32KB SRAM, 2×12bit 4Msps ADC, op-amp, CAN-FD MSPM0G3107-Q1 Automotive, 80-Mhz Arm® Cortex®-M0+ MCU with 128-KB flash, 32-KB SRAM, 12-bit ADC, CAN-FD and LIN MSPM0G3505 80MHz Arm M0+ MCU, 32KB Flash, 16KB SRAM, 2×12bit 4Msps ADC, DAC, 3×COMP, 3×op-amp, CAN-FD, MATHACL MSPM0G3506 80MHz Arm M0+ MCU, 64KB Flash, 32KB SRAM, 2×12bit 4Msps ADC, DAC, 3×COMP, 3×op-amp, CAN-FD, MATHACL MSPM0G3507 80MHz Arm M0+ MCU, 128KB Flash, 32KB SRAM, 2×12bit 4Msps ADC, DAC, 3×COMP, 3×op-amp, CAN-FD, MATHACL MSPM0G3507-Q1 Automotive, 80-Mhz Arm® Cortex®-M0+ MCU with 128-KB flash, 32-KB SRAM, 12-bit ADC,DAC,OPA and CAN-FD MSPM0L1105 32-MHz Arm® Cortex®-M0+ MCU with 32-KB flash, 4-KB SRAM, 12-bit ADC MSPM0L1106 32-MHz Arm® Cortex®-M0+ MCU with 64-KB flash, 4-KB SRAM, 12-bit ADC MSPM0L1303 32-MHz Arm® Cortex®-M0+ MCU with 8-KB flash, 2-KB SRAM, 12-bit ADC, comparator, OPA MSPM0L1304 32-MHz Arm® Cortex®-M0+ MCU with 16-KB flash, 2-KB SRAM, 12-bit ADC, comparator, OPA MSPM0L1305 32-MHz Arm® Cortex®-M0+ MCU with 32-KB flash, 4-KB SRAM, 12-bit ADC, comparator, OPA MSPM0L1305-Q1 Automotive 32-Mhz Arm® Cortex®-M0+ with 32-KB flash, 4-KB RAM, 12-bit ADC, OPA, LIN MSPM0L1306 32-MHz Arm® Cortex®-M0+ MCU with 64-KB flash, 4-KB SRAM, 12-bit ADC, comparator, OPA MSPM0L1306-Q1 Automotive 32-Mhz Arm® Cortex®-M0+ with 64-KB flash, 4-KB RAM, 12-bit ADC, OPA,LIN MSPM0L1343 32-MHz Arm® Cortex®-M0+ MCU with 8-KB flash, 2-KB SRAM, 12-bit ADC, comparator, TIA MSPM0L1344 32-MHz Arm® Cortex®-M0+ MCU with 16-KB flash, 2-KB SRAM, 12-bit ADC, comparator, TIA MSPM0L1345 32-MHz Arm® Cortex®-M0+ MCU with 32-KB flash, 4-KB SRAM, 12-bit ADC, comparator, TIA MSPM0L1346 32-MHz Arm® Cortex®-M0+ MCU with 64-KB flash, 4-KB SRAM, 12-bit ADC, comparator, TIA
Arm Cortex-M4 MCUs
MSP432E401Y SimpleLink™ 32-bit Arm Cortex-M4F MCU with ethernet, CAN, 1MB Flash and 256kB RAM MSP432E411Y SimpleLink™ 32-bit Arm Cortex-M4F MCU with ethernet, CAN, TFT LCD, 1MB Flash and 256kB RAM< TM4C1230C3PM High performance 32-bit ARM® Cortex®-M4F based MCU TM4C1230D5PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 64-kb Flash, 24-kb RAM, CAN, 64-pin LQFP TM4C1230E6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 32-kb RAM, CAN, 64-pin LQFP TM4C1230H6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, 64-pin LQFP TM4C1231C3PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 32-kb Flash, 12-kb RAM, CAN, RTC, 64-pin LQFP TM4C1231D5PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 64-kb Flash, 24-kb RAM, CAN, RTC, 64-pin LQFP TM4C1231D5PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 64-kb Flash, 24-kb RAM, CAN, RTC, 100-pin LQFP TM4C1231E6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 24-kb RAM, CAN, RTC, 64-pin LQFP TM4C1231E6PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 32-kb RAM, CAN, RTC, 100-pin LQFP TM4C1231H6PGE 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, RTC, 144-pin LQFP TM4C1231H6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, RTC, 64-pin LQFP TM4C1231H6PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, RTC, 100-pin LQFP TM4C1232C3PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 32-kb Flash, 32-kb RAM, CAN, USB-D, 64-pin LQFP TM4C1232D5PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 64-kb Flash, 12-kb RAM, CAN, USB-D, 64-pin LQFP TM4C1232E6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 24-kb RAM, CAN, USB-D, 64-pin LQFP TM4C1232H6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, USB-D, 64-pin LQFP TM4C1233C3PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 32-kb Flash, 32-kb RAM, CAN, RTC, USB-D, 64-pin LQFP TM4C1233D5PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 64-kb Flash, 12-kb RAM, CAN, RTC, USB-D, 64-pin LQFP TM4C1233D5PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 64-kb Flash, 24-kb RAM, CAN, RTC, USB-D, 100-pin LQFP TM4C1233E6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 24-kb RAM, CAN, RTC, USB-D, 64-pin LQFP TM4C1233E6PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 32-kb RAM, CAN, RTC, USB-D, 100-pin LQFP TM4C1233H6PGE 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, RTC, USB-D, 144-pin LQFP TM4C1233H6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, RTC, USB-D, 64-pin LQFP TM4C1233H6PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, RTC, USB-D, 100-pin LQFP TM4C1236D5PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 64-kb Flash, 32-kb RAM, CAN, USB, 64-pin LQFP TM4C1236E6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 24-kb RAM, CAN, USB, 64-pin LQFP TM4C1236H6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, USB, 64-pin LQFP TM4C1237D5PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 64-kb Flash, 32-kb RAM, CAN, RTC, USB, 64-pin LQFP TM4C1237D5PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 64-kb Flash, 24-kb RAM, CAN, RTC, USB, 100-pin LQFP TM4C1237E6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 24-kb RAM, CAN, RTC, USB, 64-pin LQFP TM4C1237E6PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 32-kb RAM, CAN, RTC, USB, 100-pin LQFP TM4C1237H6PGE 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, RTC, USB, 144-pin LQFP TM4C1237H6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, RTC, USB, 64-pin LQFP TM4C1237H6PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, RTC, USB, 100-pin LQFP TM4C123AE6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 32-kb RAM, 2x CAN, 64-pin LQFP TM4C123AH6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, 64-pin LQFP TM4C123BE6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 32-kb RAM, 2x CAN, RTC, 64-pin LQFP TM4C123BE6PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 32-kb RAM, 2x CAN, RTC, 100-pin LQFP TM4C123BH6NMR 32-bit Arm® Cortex®-M4F-based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, RTC, USB< TM4C123BH6PGE 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, RTC, 144-pin LQFP TM4C123BH6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, RTC, 64-pin LQFP TM4C123BH6PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, RTC, 100-pin LQFP TM4C123BH6ZRB 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, RTC, 157-pin BGA TM4C123FE6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 32-kb RAM, 2x CAN, USB, 64-pin LQFP TM4C123FH6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, USB, 64-pin LQFP TM4C123GE6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 32-kb RAM, 2x CAN, RTC, USB, 64-pin LQFP TM4C123GE6PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 32-kb RAM, 2x CAN, RTC, USB, 100-pin LQFP TM4C123GH6NMR 32-bit Arm® Cortex®-M4F-based MCU with 80-MHz, 256-kb flash, 32-kb RAM, 2x CAN, RTC, USB TM4C123GH6PGE 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, RTC, USB, 144-pin LQFP TM4C123GH6PM 32-bit Arm Cortex-M4F based MCU with 80 -MHz, 256 -KB Flash, 32 -KB RAM, 2 CAN, RTC, USB, 64-Pin TM4C123GH6PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, RTC, USB, 100-pin LQFP TM4C123GH6ZRB 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, RTC, USB, 157-pin BGA TM4C123GH6ZXR 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, RTC, USB, 168-pin BGA TM4C1290NCPDT 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB TM4C1290NCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB TM4C1292NCPDT 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, ENET MAC+MII TM4C1292NCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, ENET MAC+MII TM4C1294KCPDT 32-bit Arm Cortex-M4F based MCU with 120-MHz, 512-kb Flash, 256-kb RAM, USB, ENET MAC+PHY TM4C1294NCPDT 32-bit Arm Cortex-M4F based MCU with 120-MHZ, 1-MB flash, 256-KB RAM, USB, ENET MAC+PHY TM4C1294NCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, ENET MAC+PHY TM4C1297NCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, LCD TM4C1299KCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 512-kb Flash, 256-kb RAM, USB, ENET MAC+PHY, LCD TM4C1299NCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, ENET MAC+PHY, LCD TM4C129CNCPDT 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, AES TM4C129CNCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, AES TM4C129DNCPDT 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, ENET MAC+MII, AES TM4C129DNCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, ENET MAC+MII, AES TM4C129EKCPDT 32-bit Arm Cortex-M4F based MCU with 120-MHz, 512-kb Flash, 256-kb RAM, USB, ENET MAC+PHY, AES TM4C129ENCPDT 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, ENET MAC+PHY, AES TM4C129ENCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, ENET MAC+PHY, AES TM4C129LNCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, ENET MAC+PHY, LCD, AES TM4C129XKCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 512-kb Flash, 256-kb RAM, USB, ENET MAC+PHY, LCD, AES TM4C129XNCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-KB RAM, USB, ENET MAC+PHY, LCD, AES TMS470MF03107 16/32-bit RISC Flash microcontroller TMS470MF04207 16/32-bit RISC Flash microcontroller TMS470MF06607 16/32-bit RISC Flash microcontroller
Arm Cortex-R MCUs
AM2431 Arm® Cortex®-R5F-based MCU with industrial communications and security up to 800 MHz AM2432 Dual-core Arm® Cortex®-R5F-based MCU with industrial communications and security up to 800 MHz AM2434 Quad-core Arm® Cortex®-R5F-based MCU with industrial communications and security up to 800 MHz AM2631 Single-core Arm® Cortex®-R5F MCU up to 400 MHz with real-time control and security AM2631-Q1 Automotive single-core Arm® Cortex®-R5F MCU up to 400 MHz with real-time control and security AM2632 Dual-core Arm® Cortex®-R5F MCU up to 400 MHz with real-time control and security AM2632-Q1 Automotive dual-core Arm® Cortex®-R5F MCU up to 400 MHz with real-time control and security AM2634 Quad-core Arm® Cortex®-R5F MCU up to 400 MHz with real-time control and security AM2634-Q1 Automotive quad-core Arm® Cortex®-R5F MCU up to 400 MHz with real-time control and security AM263P4 Quad-core Arm® Cortex®-R5F MCU up to 400 MHz with real-time control and expandable memory AM263P4-Q1 Automotive quad-core Arm® Cortex®-R5F MCU up to 400 MHz with real-time control and expand AM2732 Dual-core Arm® Cortex-R5F based MCU with C66x DSP, ethernet and security up to 400 MHz AM2732-Q1 Automotive dual-core Arm® Cortex-R5F MCU up to 400 MHz with C66x DSP, Ethernet, safety, security RM41L232 16/32 Bit RISC Flash MCU, Arm Cortex-R4F RM42L432 16/32 Bit RISC Flash MCU, Arm Cortex-R4F RM44L520 16/32 Bit RISC Flash MCU, Arm Cortex-R4F RM44L920 16/32 Bit Arm Cortex-R4F Flash MCU, RISC RM46L430 16/32 Bit RISC Flash MCU, Cortex R4F, USB RM46L440 16/32 Bit RISC Flash MCU, Cortex R4F, EMAC RM46L450 16/32 Bit RISC Flash MCU, Cortex R4F, EMAC, USB RM46L830 16/32 Bit RISC Flash MCU, Cortex R4F, USB RM46L840 16/32 Bit RISC Flash MCU, Cortex R4F, EMAC RM46L850 16/32 Bit RISC Flash MCU, Cortex R4F, EMAC, USB RM46L852 16/32 Bit RISC Flash MCU, Cortex R4F, EMAC, USB RM48L530 16/32-Bit RISC Flash Microcontroller RM48L540 16/32-Bit RISC Flash Microcontroller RM48L730 16/32-Bit RISC Flash Microcontroller RM48L740 16/32-Bit RISC Flash Microcontroller RM48L940 16/32-Bit RISC Flash Microcontroller RM48L950 16/32-Bit RISC Flash Microcontroller RM48L952 16/32-Bit RISC Flash Microcontroller RM57L843 16/32 Bit Arm Cortex-R5F Flash MCU, RISC, EMAC SM320F2812-HT C2000™ High Temperature 32-bit MCU with 150 MHz, 256 KB Flash, EMIF TMS470R1A256 16/32-Bit RISC Flash Microcontroller TMS470R1A288 16/32-Bit RISC Flash Microcontroller TMS470R1A384 16/32-Bit RISC Flash Microcontroller TMS470R1A64 16/32-Bit RISC Flash Microcontroller TMS470R1B1M 16/32-Bit RISC Flash Microcontroller TMS470R1B512 16/32-Bit RISC Flash Microcontroller TMS470R1B768 16/32-Bit RISC Flash Microcontroller TMS5700404-Q1 TMS5700404-Q1 TMS5700405-Q1 TMS5700405-Q1 TMS5701203-Q1 TMS5701203-Q1 TMS570LC4357 16/32 Bit RISC Flash MCU, Arm Cortex-R5F, EMAC, FlexRay, Auto Q-100 TMS570LC4357-EP Enhanced product, 16/32 bit RISC flash MCU, Arm Cortex-R5F, EMAC, FlexRay TMS570LS0232 16/32 Bit RISC Flash MCU, Arm Cortex-R4, Auto Q-100 TMS570LS0332 16/32 Bit RISC Flash MCU, Arm Cortex-R4, Auto Q-100 TMS570LS0432 16/32 Bit RISC Flash MCU, Arm Cortex-R4, Auto Q-100 TMS570LS0714 16/32 Bit RISC Flash MCU, Arm Cortex-R4F, Auto Q-100 TMS570LS0714-S High Performance 32-bit ARM Cortex-R5 based Microcontroller TMS570LS0914 16/32 Bit RISC Flash MCU, Arm Cortex-R4F, Auto Q-100 TMS570LS10106 ARM Cortex-R4F Flash Microcontroller TMS570LS10116 ARM Cortex-R4F Flash Microcontroller TMS570LS10206 ARM Cortex-R4F Flash Microcontroller TMS570LS1114 16/32 Bit RISC Flash MCU, Cortex R4F, Auto Q100 TMS570LS1115 16/32 Bit RISC Flash MCU, Cortex R4F, Auto Q100, Flexray TMS570LS1224 16/32 Bit RISC Flash MCU, Cortex R4F, Auto Q100 TMS570LS1225 16/32 Bit RISC Flash MCU, Cortex R4F, Auto Q100, Flexray TMS570LS1227 16/32 Bit RISC Flash MCU, Cortex R4F, Auto Q100, Flexray, EMAC TMS570LS20206 ARM Cortex-R4F Flash Microcontroller TMS570LS20206-EP Enhanced Product 16- and 32-Bit RISC Flash Microcontroller TMS570LS20216 ARM Cortex-R4F Flash Microcontroller TMS570LS20216-EP Enhanced Product 16- and 32-Bit RISC Flash Microcontroller TMS570LS2124 16/32 Bit RISC Flash MCU, Arm Cortex-R4F TMS570LS2125 16/32 Bit RISC Flash MCU, Arm Cortex-R4F, FlexRay TMS570LS2134 16/32 Bit RISC Flash MCU, Arm Cortex-R4F TMS570LS2135 16/32 Bit RISC Flash MCU, Arm Cortex-R4F, FlexRay TMS570LS3134 16/32 Bit RISC Flash MCU, Arm Cortex-R4F TMS570LS3135 16/32 Bit RISC Flash MCU, Arm Cortex-R4F, FlexRay TMS570LS3137 16/32 Bit RISC Flash MCU, Arm Cortex-R4F, EMAC, FlexRay TMS570LS3137-EP Enhanced Product 16/32 Bit RISC Flash Arm Cortex-R4F, EMAC, FlexRay
Sub-1 GHz wireless MCUs
CC1310 SimpleLink™ 32-bit Arm Cortex-M3 Sub-1 GHz wireless MCU with 128kB Flash CC1311P3 SimpleLink™ Arm® Cortex®-M4 Sub-1 GHz wireless MCU with 352-KB Flash and integrated +20dBm PA CC1311R3 SimpleLink™ Arm® Cortex®-M4 Sub-1 GHz wireless MCU with 352-kB flash CC1312R SimpleLink™ 32-bit Arm Cortex-M4F Sub-1 GHz wireless MCU with 352kB Flash CC1312R7 SimpleLink™ Arm® Cortex®-M4F multiprotocol Sub-1 GHz wireless MCU with 704-kB Flash CC1314R10 SimpleLink™ Arm® Cortex®-M33 Sub-1 GHz wireless MCU with 1-MB flash and up to 296 kB of SRAM CC1350 SimpleLink™ 32-bit Arm Cortex-M3 multiprotocol Sub-1 GHz & 2.4 GHz wireless MCU with 128kB Flash CC1352P SimpleLink™ Arm Cortex-M4F multiprotocol Sub-1 GHz & 2.4 GHz wireless MCU integrated power amplifier CC1352P7 SimpleLink™ Arm® Cortex®-M4F multiprotocol sub-1 GHz and 2.4-GHz wireless MCU integrated power amp CC1352R SimpleLink™ 32-bit Arm Cortex-M4F multiprotocol Sub-1 GHz & 2.4 GHz wireless MCU with 352kB Flash CC1354P10 SimpleLink™ Arm® Cortex®-M33 multiband wireless MCU with 1-MB flash, 296-KB SRAM & integrated PA CC1354R10 SimpleLink™ Arm® Cortex®-M33 multiband wireless MCU with 1-MB flash and up to 296-KB SRAM CC430F5123 16-bit ultra-low-power CC430 Sub 1 GHz wireless MCU with 8kB Flash and 2kB RAM CC430F5125 16-Bit ultra-low-power CC430 Sub 1 GHz wireless MCU with 16kB Flash and 2kB RAM CC430F5133 16-Bit ultra-low-power CC430 Sub 1 GHz wireless MCU with 12-Bit ADC, 8kB Flash and 2kB RAM CC430F5135 16-Bit ultra-low-power CC430 Sub 1 GHz wireless MCU with 12-Bit ADC, 16kB Flash and 2kB RAM CC430F5137 16-Bit ultra-low-power CC430 Sub 1 GHz wireless MCU with 12-Bit ADC, 32kB Flash and 4kB RAM CC430F5143 16-Bit ultra-low-power CC430 Sub 1 GHz wireless MCU with 10-bit ADC, 8kB Flash and 2kB RAM CC430F5145 16-Bit ultra-low-power CC430 Sub 1 GHz wireless MCU with 10-bit ADC, 16kB Flash and 2kB RAM CC430F5147 16-Bit ultra-low-power CC430 Sub 1 GHz wireless MCU with 10-bit ADC, 32kB Flash and 4kB RAM
Launch Download options
Software codec

C66XCODECS — CODECS- Video, Speech - for C66x-based Devices

TI codecs are free, come with production licensing and are available for download now. All are production-tested for easy integration into video and voice applications. In many cases, the C64x+ codecs are provided and validated for C66x platforms. Datasheets and Release Notes are on the download (...)
Software codec

VOCAL-3P-DSPVOIPCODECS — Vocal technologies DSP VoIP codecs

With over 25 years of assembly and C code development, VOCAL modular software suite is available for a wide variety of TI DSPs. Products include ATAs, VoIP servers and gateways, HPNA-based IPBXs, video surveillance, voice and video conferencing, voice and data RF devices, RoIP gateways, secure (...)
Simulation model

C6654 Power Consumption Model (Rev. A)

SPRM602A.ZIP (173 KB) - Power Model
Simulation model

KeyStone I SerDes IBIS AMI Models

SPRM742.ZIP (969314 KB) - IBIS Model
lock = Requires export approval (1 minute)
Simulation model

TMS320C6654 CYP IBIS Model

SPRM598.ZIP (415 KB) - IBIS Model
Simulation model

TMS320C6657/55/54 CZH BSDL Model (Silicon Revision 1)

SPRM572.ZIP (21 KB) - BSDL Model
Design tool

PROCESSORS-3P-SEARCH — Arm®-based MPU, Arm-based MCU and DSP third-party search tool

TI has partnered with companies to offer a wide range of software, tools, and SOMs using TI processors to accelerate your path to production. Download this search tool to quickly browse our third-party solutions and find the right third-party to meet your needs. The software, tools and modules (...)
Reference designs

TIDEP0036 — Reference Design using TMS320C6657 to Implement Efficient OPUS Codec Solution

The TIDEP0036 reference design provides an example of the ease of running TI optimized Opus encoder/decoder on the TMS320C6657 device. Since Opus supports a a wide range of bit rates, frame sizes and sampling rates, all with low delay, it has applicability for voice communications, networked audio (...)
Design guide: PDF
Schematic: PDF
Package Pins Download
FCBGA (CZH) 625 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Recommended products may have parameters, evaluation modules or reference designs related to this TI product.

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos