Home Power management DC/DC switching regulators Step-up (boost) regulators Boost converters (integrated switch)

TPS61122

LAST TIME BUY

3.6-V 95% Efficient Boost Converter with 3.3-V 200-mA LDO for 1-Cell LiIon or Dual-Cell Applications

TPS61122 is in the process of being discontinued
Consider one of these alternates:
open-in-new Compare alternates
Similar functionality to the compared device
TPS61023 ACTIVE 3.7-A boost converter with 0.5-V ultra-low input voltage Replacement
TPS610981 ACTIVE Low input voltage, 3.3-V output voltage, synchronous boost converter with integrated LDO For applications requiring ultra-low Iq or smaller package.

Product details

Topology Boost Vin (min) (V) 1.8 Vin (max) (V) 5.5 Vout (min) (V) 3.6 Vout (max) (V) 3.6 Switch current limit (typ) (A) 1.6 Type Converter Regulated outputs (#) 2 Switching frequency (min) (kHz) 400 Switching frequency (max) (kHz) 600 Iq (typ) (mA) 0.04 Features Enable, Light Load Efficiency, Load Disconnect, Power good, Synchronous Rectification Duty cycle (max) (%) 100 Operating temperature range (°C) -40 to 125 Rating Catalog
Topology Boost Vin (min) (V) 1.8 Vin (max) (V) 5.5 Vout (min) (V) 3.6 Vout (max) (V) 3.6 Switch current limit (typ) (A) 1.6 Type Converter Regulated outputs (#) 2 Switching frequency (min) (kHz) 400 Switching frequency (max) (kHz) 600 Iq (typ) (mA) 0.04 Features Enable, Light Load Efficiency, Load Disconnect, Power good, Synchronous Rectification Duty cycle (max) (%) 100 Operating temperature range (°C) -40 to 125 Rating Catalog
TSSOP (PW) 16 32 mm² 5 x 6.4
  • Synchronous, 95% Efficient, Boost Converter With
    500-mA Output Current From 1.8-V Input
  • Integrated 200-mA Reverse Voltage Protected
    LDO for DC-DC Output Voltage Post Regulation
    or Second Output Voltage
  • 40-µA (Typical) Total Device Quiescent Current
  • Input Voltage Range: 1.8 V to 5.5 V
  • Fixed and Adjustable Output Voltage Options up
    to 5.5 V
  • Power Save Mode for Improved Efficiency at Low
    Output Power
  • Low Battery Comparator
  • Power Good Output
  • Low EMI-Converter (Integrated Antiringing Switch)
  • Load Disconnect During Shutdown
  • Overtemperature Protection
  • Available in a Small 4-mm × 4-mm VQFN-16 or in
    a TSSOP-16 Package
  • Synchronous, 95% Efficient, Boost Converter With
    500-mA Output Current From 1.8-V Input
  • Integrated 200-mA Reverse Voltage Protected
    LDO for DC-DC Output Voltage Post Regulation
    or Second Output Voltage
  • 40-µA (Typical) Total Device Quiescent Current
  • Input Voltage Range: 1.8 V to 5.5 V
  • Fixed and Adjustable Output Voltage Options up
    to 5.5 V
  • Power Save Mode for Improved Efficiency at Low
    Output Power
  • Low Battery Comparator
  • Power Good Output
  • Low EMI-Converter (Integrated Antiringing Switch)
  • Load Disconnect During Shutdown
  • Overtemperature Protection
  • Available in a Small 4-mm × 4-mm VQFN-16 or in
    a TSSOP-16 Package

The TPS6112x devices provide a complete power supply solution for products powered by either a one-cell Li-Ion or Li-Polymer by either a one-cell Li-Ion or Li-Polymer battery, or a two- to four-cell Alkaline, NiCd, or NiMH battery. The devices can generate two stable output voltages that are either adjusted by an external resistor divider or are fixed internally on the chip. The device also provides a simple solution for generating 3.3 V out of a one-cell Li-Ion or Li-Polymer battery at a maximum output current of at least 200 mA with supply voltages down to 1.8 V. The implemented boost converter is based on a fixed frequency, pulse-width-modulation (PWM) controller using a synchronous rectifier to obtain maximum efficiency. The maximum peak current in the boost switch is limited to a value of 1600 mA.

The converter can be disabled to minimize battery drain. During shutdown, the load is completely disconnected from the battery. A low-EMI mode is implemented to reduce ringing and, in effect, lower radiated electromagnetic energy when the converter enters discontinuous conduction mode. A power good output at the boost stage simplifies control of any connected circuits like cascaded power supply stages or microprocessors.

The built-in LDO can be used for a second output voltage derived either from the boost output or directly from the battery. The LDO can be enabled separately that is, using the power good of the boost stage. The device is packaged in a 16-pin VQFN (RSA) package measuring 4 mm × 4 mm or in a 16-pin TSSOP (PW) package.

The TPS6112x devices provide a complete power supply solution for products powered by either a one-cell Li-Ion or Li-Polymer by either a one-cell Li-Ion or Li-Polymer battery, or a two- to four-cell Alkaline, NiCd, or NiMH battery. The devices can generate two stable output voltages that are either adjusted by an external resistor divider or are fixed internally on the chip. The device also provides a simple solution for generating 3.3 V out of a one-cell Li-Ion or Li-Polymer battery at a maximum output current of at least 200 mA with supply voltages down to 1.8 V. The implemented boost converter is based on a fixed frequency, pulse-width-modulation (PWM) controller using a synchronous rectifier to obtain maximum efficiency. The maximum peak current in the boost switch is limited to a value of 1600 mA.

The converter can be disabled to minimize battery drain. During shutdown, the load is completely disconnected from the battery. A low-EMI mode is implemented to reduce ringing and, in effect, lower radiated electromagnetic energy when the converter enters discontinuous conduction mode. A power good output at the boost stage simplifies control of any connected circuits like cascaded power supply stages or microprocessors.

The built-in LDO can be used for a second output voltage derived either from the boost output or directly from the battery. The LDO can be enabled separately that is, using the power good of the boost stage. The device is packaged in a 16-pin VQFN (RSA) package measuring 4 mm × 4 mm or in a 16-pin TSSOP (PW) package.

Download View video with transcript Video

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 13
Type Title Date
* Data sheet TPS6112x Synchronous Boost Converter With 1.1-A Switch and Integrated LDO datasheet (Rev. D) PDF | HTML 28 May 2015
Application note 스트컨버터의 전력계 기본 계산 (Rev. D) PDF | HTML 21 Nov 2022
Application note Basic Calculation of a Boost Converter's Power Stage (Rev. D) PDF | HTML 28 Oct 2022
Application note LDO Noise Demystified (Rev. B) PDF | HTML 18 Aug 2020
Application note Performing Accurate PFM Mode Efficiency Measurements (Rev. A) 11 Dec 2018
Selection guide Power Management Guide 2018 (Rev. R) 25 Jun 2018
Application note Optimizing Transient Response of Internally Compensated DC-DC Converters (Rev. B) 29 Nov 2017
Application note LDO PSRR Measurement Simplified (Rev. A) PDF | HTML 09 Aug 2017
Application note Extending the Soft Start Time Without a Soft Start Pin (Rev. B) 15 Jun 2017
Application note Choosing an Appropriate Pull-up/Pull-down Resistor for Open Drain Outputs 19 Sep 2011
Analog Design Journal IQ: What it is, what it isn’t, and how to use it 17 Jun 2011
EVM User's guide TPS6112xEVM-205, For Dual Output, Single-Cell Boost Converter User's Guide (Rev. A) 02 Jun 2008
Application note Minimizing Ringing at the Switch Node of a Boost Converter 15 Sep 2006

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

TPS61120EVM-205 — TPS61120 Evaluation Module

The TPS61120EVM-205 is an evaluation tool for the TPS61120 inductive boost converter with LDO in 4x4mm2 QFN. The boost stage can supply voltages up to 5.5V from input voltages in the range of 1.8V to 5.5V. The LDO stage can supply voltages down to 0.9V from input voltages in the range of 1.5V to (...)

User guide: PDF
Not available on TI.com
Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Package Pins Download
TSSOP (PW) 16 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos