Detalles del producto

Technology family CD4000 Rating Military Operating temperature range (°C) -55 to 125
Technology family CD4000 Rating Military Operating temperature range (°C) -55 to 125
CDIP (J) 16 135.3552 mm² 19.56 x 6.92
  • Independent asynchronous inputs and outputs
  • 3-state outputs
  • Expandable in either direction
  • Status indicators on input and output
  • Reset capability
  • Standardized, symmetrical output characteristics
  • 100% tested for quiescent current at 20 V
  • 5-V, 10-V, and 15-V parametric ratings
  • Maximum input current of 1 uA at 18 V over full package-temperature range; 100 nA at 18 V and 25°C
  • Noise margin (over full package-temperature range): 1V at VDD = 5V, 2V at VDD = 10 V, 2.5 V at VDD = 15 V
  • Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"
  • Applications
    • Bit rate smoothing
    • CPU/terminal buffering
    • Data communications
    • Peripheral buffering
    • Line printer input buffers
    • Auto dialers
    • CRT buffer memories
    • Radar data acquisition
  • Independent asynchronous inputs and outputs
  • 3-state outputs
  • Expandable in either direction
  • Status indicators on input and output
  • Reset capability
  • Standardized, symmetrical output characteristics
  • 100% tested for quiescent current at 20 V
  • 5-V, 10-V, and 15-V parametric ratings
  • Maximum input current of 1 uA at 18 V over full package-temperature range; 100 nA at 18 V and 25°C
  • Noise margin (over full package-temperature range): 1V at VDD = 5V, 2V at VDD = 10 V, 2.5 V at VDD = 15 V
  • Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"
  • Applications
    • Bit rate smoothing
    • CPU/terminal buffering
    • Data communications
    • Peripheral buffering
    • Line printer input buffers
    • Auto dialers
    • CRT buffer memories
    • Radar data acquisition

CD40105B is a low-power first-in-first-out (FIFO) "elastic" storage register that can store 16 4-bit words. It is capable of handling input and output data at different shifting rates. This feature makes it particularly useful as a buffer between asynchronous systems.

Each word position in the register is clocked by a control flip-flop, which stores a marker bit. A "1" signifies that the position's data is filed and a "0" denotes a vacancy in that positiion. The control flip-flop detects the state of the preceding flip-flop and communicates its own status to the succeeding flip-flop. When a control flip-flop is in the "0" state and sees a "1" in the preceding flip-flop, it generates a clock pulse that transfers data from the preceding four data latches into its own four data latches and resets the preceding flip-flop to "0". The first and last control flip-flops have buffered outputs. Since all empty locations "bubble" automatically to the input end, and all valid data ripple through to the output end, the status of the first control flip-flop (DATA-IN READY) indicates if the FIFO is full, and the status of the last flip-flop (DATA-OUT READY) indicates if the FIFO contains data. As the earliest data are removed from the bottom of the data stack (the output end), all data entered later will automatically propagate (ripple) toward the output.

Loading Data - Data can be entered whenever the DATA-IN READY (DIR) flag is high, by a low to high transition on the SHIFT-IN (SI) input. This input must go low momentarily before the next word is accepted by the FIFO. The DIR flag will go low momentarily, until the data have been transferred to the second location. The flag will remian low when all 16-word locations are filled with valid data, and further pulses on the SI input will be ignored until DIR goes high.

Unloading Data - As soon as the first work has rippled to the output, DATA-OUT READY (DOR) goes high, and data can be removed by a falling edge on the SO input. This falling edge causes the DOR signal to go low while the word on the output is dumped and the next word moves to the output. As long as valid data are available in the FIFO, the DOR signal will go high again signifying that the next word is ready at the output. When the FIFO is empty, DOR will remain low, and any further commands will be ignored until a "1" marker ripples down to the last control register, when DOR goes high. Unloading of data is inhibited while the 3-state control input is high. The 3-state control signal should not be shifted from high to low (data outputs turned on) while the SHIFT-OUT is a logic 0. This level change would cause the first word to be shifted out (unloaded) immediately and the data to be lost.

Cascading - The CD40105B can be cascaded to form longer registers simply by connecting the DIR to SO and DOR to SI. In the cascaded mode, a MASTER RESET pulse must be applied after the supply voltage is turned on. For words wider than 4 bits, the DIR and the DOR outputs must be gated together with AND gates. Their outputs drive the SI and SO inputs in paralled, if expanding is done in both directions (see Figs. 3 and 15).

3-State Outputs - In order to facilitate data busing, 3-state outputs are provided on the data output lines, while the load condition of the register can be detected by the state of the DOR output.

Master Reset - A high on the MASTER RESET (MR) sets all the contol logic marker bits to "0". DOR goes low and DIR goes high. The contents of the data register are not changed, only declared invalid, and will be superseded when the first word is loaded. The shift-in must be low during Master Reset. The CD40105B types are supplied in 16-lead hermetic dual-in-line ceramic packages (D and F suffixes), 16-lead dual-in-line plastic packages (E suffix), and in chip form (H suffix).

CD40105B is a low-power first-in-first-out (FIFO) "elastic" storage register that can store 16 4-bit words. It is capable of handling input and output data at different shifting rates. This feature makes it particularly useful as a buffer between asynchronous systems.

Each word position in the register is clocked by a control flip-flop, which stores a marker bit. A "1" signifies that the position's data is filed and a "0" denotes a vacancy in that positiion. The control flip-flop detects the state of the preceding flip-flop and communicates its own status to the succeeding flip-flop. When a control flip-flop is in the "0" state and sees a "1" in the preceding flip-flop, it generates a clock pulse that transfers data from the preceding four data latches into its own four data latches and resets the preceding flip-flop to "0". The first and last control flip-flops have buffered outputs. Since all empty locations "bubble" automatically to the input end, and all valid data ripple through to the output end, the status of the first control flip-flop (DATA-IN READY) indicates if the FIFO is full, and the status of the last flip-flop (DATA-OUT READY) indicates if the FIFO contains data. As the earliest data are removed from the bottom of the data stack (the output end), all data entered later will automatically propagate (ripple) toward the output.

Loading Data - Data can be entered whenever the DATA-IN READY (DIR) flag is high, by a low to high transition on the SHIFT-IN (SI) input. This input must go low momentarily before the next word is accepted by the FIFO. The DIR flag will go low momentarily, until the data have been transferred to the second location. The flag will remian low when all 16-word locations are filled with valid data, and further pulses on the SI input will be ignored until DIR goes high.

Unloading Data - As soon as the first work has rippled to the output, DATA-OUT READY (DOR) goes high, and data can be removed by a falling edge on the SO input. This falling edge causes the DOR signal to go low while the word on the output is dumped and the next word moves to the output. As long as valid data are available in the FIFO, the DOR signal will go high again signifying that the next word is ready at the output. When the FIFO is empty, DOR will remain low, and any further commands will be ignored until a "1" marker ripples down to the last control register, when DOR goes high. Unloading of data is inhibited while the 3-state control input is high. The 3-state control signal should not be shifted from high to low (data outputs turned on) while the SHIFT-OUT is a logic 0. This level change would cause the first word to be shifted out (unloaded) immediately and the data to be lost.

Cascading - The CD40105B can be cascaded to form longer registers simply by connecting the DIR to SO and DOR to SI. In the cascaded mode, a MASTER RESET pulse must be applied after the supply voltage is turned on. For words wider than 4 bits, the DIR and the DOR outputs must be gated together with AND gates. Their outputs drive the SI and SO inputs in paralled, if expanding is done in both directions (see Figs. 3 and 15).

3-State Outputs - In order to facilitate data busing, 3-state outputs are provided on the data output lines, while the load condition of the register can be detected by the state of the DOR output.

Master Reset - A high on the MASTER RESET (MR) sets all the contol logic marker bits to "0". DOR goes low and DIR goes high. The contents of the data register are not changed, only declared invalid, and will be superseded when the first word is loaded. The shift-in must be low during Master Reset. The CD40105B types are supplied in 16-lead hermetic dual-in-line ceramic packages (D and F suffixes), 16-lead dual-in-line plastic packages (E suffix), and in chip form (H suffix).

Descargar Ver vídeo con transcripción Video

Documentación técnica

star =Principal documentación para este producto seleccionada por TI
No se encontraron resultados. Borre su búsqueda y vuelva a intentarlo.
Ver todo 7
Tipo Título Fecha
* Data sheet CMOS FIFO Register datasheet 21 nov 1998
Selection guide Logic Guide (Rev. AB) 12 jun 2017
Application note Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 02 dic 2015
User guide LOGIC Pocket Data Book (Rev. B) 16 ene 2007
Application note Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 08 jul 2004
User guide Signal Switch Data Book (Rev. A) 14 nov 2003
Application note Understanding Buffered and Unbuffered CD4xxxB Series Device Characteristics 03 dic 2001

Diseño y desarrollo

Para conocer los términos adicionales o los recursos necesarios, haga clic en cualquier título de abajo para ver la página de detalles cuando esté disponible.

Paquete Pasadores Descargar
CDIP (J) 16 Ver opciones

Pedidos y calidad

Información incluida:
  • RoHS
  • REACH
  • Marcado del dispositivo
  • Acabado de plomo/material de la bola
  • Clasificación de nivel de sensibilidad a la humedad (MSL) / reflujo máximo
  • Estimaciones de tiempo medio entre fallas (MTBF)/fallas en el tiempo (FIT)
  • Contenido del material
  • Resumen de calificaciones
  • Monitoreo continuo de confiabilidad
Información incluida:
  • Lugar de fabricación
  • Lugar de ensamblaje

Soporte y capacitación

Foros de TI E2E™ con asistencia técnica de los ingenieros de TI

El contenido lo proporcionan “tal como está” TI y los colaboradores de la comunidad y no constituye especificaciones de TI. Consulte los términos de uso.

Si tiene preguntas sobre la calidad, el paquete o el pedido de productos de TI, consulte el soporte de TI. ​​​​​​​​​​​​​​

Videos