產品詳細資料

Supply voltage (min) (V) 2 Supply voltage (max) (V) 6 Number of channels 8 IOL (max) (mA) 7.8 IOH (max) (mA) -7.8 Input type CMOS Output type CMOS Features Balanced outputs, High speed (tpd 10-50ns), Positive input clamp diode Technology family HC Rating Military Operating temperature range (°C) -55 to 125
Supply voltage (min) (V) 2 Supply voltage (max) (V) 6 Number of channels 8 IOL (max) (mA) 7.8 IOH (max) (mA) -7.8 Input type CMOS Output type CMOS Features Balanced outputs, High speed (tpd 10-50ns), Positive input clamp diode Technology family HC Rating Military Operating temperature range (°C) -55 to 125
CDIP (J) 24 425.45 mm² 31.75 x 13.4
  • 2-V to 6-V VCC Operation (CD54HC646)
  • 4.5-V to 5.5-V VCC Operation (CD74HCT646)
  • Wide Operating Temperature Range of –55°C to 125°C
  • Balanced Propagation Delays and Transition Times
  • Standard Outputs Drive Up To 15 LS-TTL Loads
  • Significant Power Reduction Compared to LS-TTL Logic ICs
  • Inputs Are TTL-Voltage Compatible (CD74HCT646)
  • Independent Registers for A and B Buses
  • Multiplexed Real-Time and Stored Data
  • True Data Paths

  • 2-V to 6-V VCC Operation (CD54HC646)
  • 4.5-V to 5.5-V VCC Operation (CD74HCT646)
  • Wide Operating Temperature Range of –55°C to 125°C
  • Balanced Propagation Delays and Transition Times
  • Standard Outputs Drive Up To 15 LS-TTL Loads
  • Significant Power Reduction Compared to LS-TTL Logic ICs
  • Inputs Are TTL-Voltage Compatible (CD74HCT646)
  • Independent Registers for A and B Buses
  • Multiplexed Real-Time and Stored Data
  • True Data Paths

The CD54HC646 and CD74HCT646 consist of bus-transceiver circuits with 3-state outputs, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the input bus or from the internal registers. Data on the A or B bus is clocked into the registers on the low-to-high transition of the appropriate clock (CLKAB or CLKBA) input. Figure 1 illustrates the four fundamental bus-management functions that can be performed with these devices.

Output-enable (OE\) and direction-control (DIR) inputs control the transceiver functions. In the transceiver mode, data present at the high-impedance port can be stored in either or both registers.

The select-control (SAB and SBA) inputs can multiplex stored and real-time (transparent mode) data. DIR determines which bus receives data when OE\ is active (low). In the isolation mode (OE\ high), A data can be stored in one register and/or B data can be stored in the other register.

When an output function is disabled, the input function still is enabled and can be used to store data. Only one of the two buses, A or B, can be driven at a time.

To ensure the high-impedance state during power up or power down, OE\ should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The CD54HC646 and CD74HCT646 consist of bus-transceiver circuits with 3-state outputs, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the input bus or from the internal registers. Data on the A or B bus is clocked into the registers on the low-to-high transition of the appropriate clock (CLKAB or CLKBA) input. Figure 1 illustrates the four fundamental bus-management functions that can be performed with these devices.

Output-enable (OE\) and direction-control (DIR) inputs control the transceiver functions. In the transceiver mode, data present at the high-impedance port can be stored in either or both registers.

The select-control (SAB and SBA) inputs can multiplex stored and real-time (transparent mode) data. DIR determines which bus receives data when OE\ is active (low). In the isolation mode (OE\ high), A data can be stored in one register and/or B data can be stored in the other register.

When an output function is disabled, the input function still is enabled and can be used to store data. Only one of the two buses, A or B, can be driven at a time.

To ensure the high-impedance state during power up or power down, OE\ should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

下載

技術文件

star =TI 所選的此產品重要文件
找不到結果。請清除您的搜尋條件,然後再試一次。
檢視所有 1
類型 標題 日期
* Data sheet CD54HC646, CD74HCT646 datasheet (Rev. B) 2003年 4月 25日

訂購與品質

內含資訊:
  • RoHS
  • REACH
  • 產品標記
  • 鉛塗層/球物料
  • MSL 等級/回焊峰值
  • MTBF/FIT 估算值
  • 材料內容
  • 認證摘要
  • 進行中持續性的可靠性監測
內含資訊:
  • 晶圓廠位置
  • 組裝地點

支援與培訓

內含 TI 工程師技術支援的 TI E2E™ 論壇

內容係由 TI 和社群貢獻者依「現狀」提供,且不構成 TI 規範。檢視使用條款

若有關於品質、封裝或訂購 TI 產品的問題,請參閱 TI 支援。​​​​​​​​​​​​​​