產品詳細資料

Function Counter Bits (#) 4 Technology family ALS Supply voltage (min) (V) 4.5 Supply voltage (max) (V) 5.5 Input type Bipolar Output type 3-State Features High speed (tpd 10-50ns) Operating temperature range (°C) 0 to 70 Rating Catalog
Function Counter Bits (#) 4 Technology family ALS Supply voltage (min) (V) 4.5 Supply voltage (max) (V) 5.5 Input type Bipolar Output type 3-State Features High speed (tpd 10-50ns) Operating temperature range (°C) 0 to 70 Rating Catalog
  • Carry Output for n-Bit Cascading
  • Buffer-Type Outputs Drive Bus Lines Directly
  • Choice of Asynchronous or Synchronous Clearing and Loading
  • Internal Look-Ahead Circuitry for Fast Cascading
  • Package Options Include Plastic Small-Outline (DW) Packages, Ceramic Chip Carriers (FK), and Standard Plastic (N) and Ceramic (J) 300-mil DIPs
  • Carry Output for n-Bit Cascading
  • Buffer-Type Outputs Drive Bus Lines Directly
  • Choice of Asynchronous or Synchronous Clearing and Loading
  • Internal Look-Ahead Circuitry for Fast Cascading
  • Package Options Include Plastic Small-Outline (DW) Packages, Ceramic Chip Carriers (FK), and Standard Plastic (N) and Ceramic (J) 300-mil DIPs

These binary counters are programmable and offer synchronous and asynchronous clearing as well as synchronous and asynchronous loading. All synchronous functions are executed on the positive-going edge of the clock.

The clear function is initiated by applying a low level to either asynchronous clear (ACLR\) or synchronous clear (SCLR\). ACLR\ (direct clear) overrides all other functions of the device, while SCLR\ overrides only the other synchronous functions. Data is loaded from the A, B, C, and D inputs by applying a low level to asynchronous load (ALOAD\) or by the combination of a low level at synchronous load (SLOAD\) and a positive-going clock transition. The counting function is enabled only when enable P (ENP), enable T (ENT), ACLR\, ALOAD\, SCLR\, and SLOAD\ are all high.

A high level at the output-enable () input forces the Q outputs into the high-impedance state, and a low level enables those outputs. Counting is independent of OE\. ENT is fed forward to enable the ripple-carry output (RCO) to produce a high-level pulse while the count is maximum (15). The clocked carry output (CCO) produces a high-level pulse for a duration equal to that of the low level of the clock when RCO is high and the counter is enabled (ENP and ENT are high); otherwise, CCO is low. CCO does not have the glitches commonly associated with a ripple-carry output. Cascading is normally accomplished by connecting RCO or CCO of the first counter to ENT of the next counter. However, for very high-speed counting, RCO should be used for cascading because CCO does not become active until the clock returns to the low level.

The SN54ALS561A is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ALS561A is characterized for operation from 0°C to 70°C.

 

 

These binary counters are programmable and offer synchronous and asynchronous clearing as well as synchronous and asynchronous loading. All synchronous functions are executed on the positive-going edge of the clock.

The clear function is initiated by applying a low level to either asynchronous clear (ACLR\) or synchronous clear (SCLR\). ACLR\ (direct clear) overrides all other functions of the device, while SCLR\ overrides only the other synchronous functions. Data is loaded from the A, B, C, and D inputs by applying a low level to asynchronous load (ALOAD\) or by the combination of a low level at synchronous load (SLOAD\) and a positive-going clock transition. The counting function is enabled only when enable P (ENP), enable T (ENT), ACLR\, ALOAD\, SCLR\, and SLOAD\ are all high.

A high level at the output-enable () input forces the Q outputs into the high-impedance state, and a low level enables those outputs. Counting is independent of OE\. ENT is fed forward to enable the ripple-carry output (RCO) to produce a high-level pulse while the count is maximum (15). The clocked carry output (CCO) produces a high-level pulse for a duration equal to that of the low level of the clock when RCO is high and the counter is enabled (ENP and ENT are high); otherwise, CCO is low. CCO does not have the glitches commonly associated with a ripple-carry output. Cascading is normally accomplished by connecting RCO or CCO of the first counter to ENT of the next counter. However, for very high-speed counting, RCO should be used for cascading because CCO does not become active until the clock returns to the low level.

The SN54ALS561A is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ALS561A is characterized for operation from 0°C to 70°C.

 

 

下載

您可能會感興趣的類似產品

open-in-new 比較替代產品
功能相同,但引腳輸出與所比較的裝置不同
SN74LV163A 現行 4 位元同步二進位計數器 Voltage range (2V to 5.5V), average drive strength (12mA), average propagation delay (9ns)

技術文件

star =TI 所選的此產品重要文件
找不到結果。請清除您的搜尋條件,然後再試一次。
檢視所有 1
類型 標題 日期
* Data sheet Synchronous 4-Bit Counters With 3-State Outputs datasheet (Rev. A) 1995年 1月 1日

訂購與品質

內含資訊:
  • RoHS
  • REACH
  • 產品標記
  • 鉛塗層/球物料
  • MSL 等級/回焊峰值
  • MTBF/FIT 估算值
  • 材料內容
  • 認證摘要
  • 進行中持續性的可靠性監測
內含資訊:
  • 晶圓廠位置
  • 組裝地點

支援與培訓

內含 TI 工程師技術支援的 TI E2E™ 論壇

內容係由 TI 和社群貢獻者依「現狀」提供,且不構成 TI 規範。檢視使用條款

若有關於品質、封裝或訂購 TI 產品的問題,請參閱 TI 支援。​​​​​​​​​​​​​​

影片