SBOS671D September   2018  – December 2022 OPA2828 , OPA828

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Phase-Reversal Protection
      2. 7.3.2  Electrical Overstress
      3. 7.3.3  MUX Friendly Inputs
      4. 7.3.4  Overload Power Limiter
      5. 7.3.5  Noise Performance
        1. 7.3.5.1 Low Noise
      6. 7.3.6  Capacitive Load and Stability
      7. 7.3.7  Settling Time
      8. 7.3.8  Slew Rate
      9. 7.3.9  Full-Power Bandwidth
      10. 7.3.10 Small-Signal Response
      11. 7.3.11 Thermal Shutdown
      12. 7.3.12 Low Offset Voltage Drift
      13. 7.3.13 Overload Recovery
    4. 7.4 Device Functional Modes
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 SAR ADC Driver
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Low-Pass Filter
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
        3. 8.2.2.3 Application Curve
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
        1. 8.4.1.1 Thermal Considerations
        2. 8.4.1.2 PowerPAD™ Design Considerations (DGN package only)
      2. 8.4.2 Layout Example
  9. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Development Support
        1. 9.1.1.1 PSpice® for TI
        2. 9.1.1.2 Filter Design Tool
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 Receiving Notification of Documentation Updates
    4. 9.4 Support Resources
    5. 9.5 Trademarks
    6. 9.6 Electrostatic Discharge Caution
    7. 9.7 Glossary
  10. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Thermal Shutdown

The OPAx828 are protected from thermal overloads by an internal thermal shutdown feature. The shutdown design provides thermal protection when operated in demanding, high-temperature industrial environments. The devices accurately measure the die junction temperature at the hottest spot on the die. As the junction temperature reaches the thermal shutdown temperature, the devices are disabled by placing the output into a high-impedance state. This state prevents further power dissipation and allows the OPAx828 to begin cooling. After the junction temperature reduces by the thermal hysteresis amount, the OPAx828 resume normal operation. If the output condition that caused the OPAx828 to heat up is still present, the devices can enter thermal shutdown again. The OPAx828 quiescent current during shutdown reduces to approximately 20 µA. Identify and correct the cause of any thermal shutdown to resume normal device operation. Thermal shutdown occurs when the OPAx828 junction temperature exceeds approximately 165°C. When in thermal shutdown, the OPAx828 return to normal operation when the junction temperature cools to approximately 145°C.