JAJSTE0 March   2024 LMK05318B-Q1

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Pin Configuration and Functions
    1. 4.1 Device Start-Up Modes
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information: 4-Layer JEDEC Standard PCB
    5. 5.5 Thermal Information: 10-Layer Custom PCB
    6. 5.6 Electrical Characteristics
    7. 5.7 Timing Diagrams
    8. 5.8 Typical Characteristics
  7. Parameter Measurement Information
    1. 6.1 Output Clock Test Configurations
  8. Detailed Description
    1. 7.1 Overview
      1. 7.1.1 ITU-T G.8262 (SyncE) Standards Compliance
    2. 7.2 Functional Block Diagram
      1. 7.2.1 PLL Architecture Overview
      2. 7.2.2 DPLL Mode
      3. 7.2.3 APLL-Only Mode
    3. 7.3 Feature Description
      1. 7.3.1  Oscillator Input (XO_P/N)
      2. 7.3.2  Reference Inputs (PRIREF_P/N and SECREF_P/N)
      3. 7.3.3  Clock Input Interfacing and Termination
      4. 7.3.4  Reference Input Mux Selection
        1. 7.3.4.1 Automatic Input Selection
        2. 7.3.4.2 Manual Input Selection
      5. 7.3.5  Hitless Switching
        1. 7.3.5.1 Hitless Switching With 1-PPS Inputs
      6. 7.3.6  Gapped Clock Support on Reference Inputs
      7. 7.3.7  Input Clock and PLL Monitoring, Status, and Interrupts
        1. 7.3.7.1 XO Input Monitoring
        2. 7.3.7.2 Reference Input Monitoring
          1. 7.3.7.2.1 Reference Validation Timer
          2. 7.3.7.2.2 Amplitude Monitor
          3. 7.3.7.2.3 Frequency Monitoring
          4. 7.3.7.2.4 Missing Pulse Monitor (Late Detect)
          5. 7.3.7.2.5 Runt Pulse Monitor (Early Detect)
          6. 7.3.7.2.6 Phase Valid Monitor for 1-PPS Inputs
        3. 7.3.7.3 PLL Lock Detectors
        4. 7.3.7.4 Tuning Word History
        5. 7.3.7.5 Status Outputs
        6. 7.3.7.6 Interrupt
      8. 7.3.8  PLL Relationships
        1. 7.3.8.1  PLL Frequency Relationships
        2. 7.3.8.2  Analog PLLs (APLL1, APLL2)
        3. 7.3.8.3  APLL Reference Paths
          1. 7.3.8.3.1 APLL XO Doubler
          2. 7.3.8.3.2 APLL1 XO Reference (R) Divider
          3. 7.3.8.3.3 APLL2 Reference (R) Dividers
        4. 7.3.8.4  APLL Phase Frequency Detector (PFD) and Charge Pump
        5. 7.3.8.5  APLL Feedback Divider Paths
          1. 7.3.8.5.1 APLL1 N Divider With SDM
          2. 7.3.8.5.2 APLL2 N Divider With SDM
        6. 7.3.8.6  APLL Loop Filters (LF1, LF2)
        7. 7.3.8.7  APLL Voltage Controlled Oscillators (VCO1, VCO2)
          1. 7.3.8.7.1 VCO Calibration
        8. 7.3.8.8  APLL VCO Clock Distribution Paths (P1, P2)
        9. 7.3.8.9  DPLL Reference (R) Divider Paths
        10. 7.3.8.10 DPLL Time-to-Digital Converter (TDC)
        11. 7.3.8.11 DPLL Loop Filter (DLF)
        12. 7.3.8.12 DPLL Feedback (FB) Divider Path
      9. 7.3.9  Output Clock Distribution
      10. 7.3.10 Output Channel Muxes
      11. 7.3.11 Output Dividers (OD)
      12. 7.3.12 Clock Outputs (OUTx_P/N)
        1. 7.3.12.1 AC-Differential Output (AC-DIFF)
        2. 7.3.12.2 HCSL Output
        3. 7.3.12.3 1.8V LVCMOS Output
        4. 7.3.12.4 Output Auto-Mute During LOL
      13. 7.3.13 Glitchless Output Clock Start-Up
      14. 7.3.14 Clock Output Interfacing and Termination
      15. 7.3.15 Output Synchronization (SYNC)
    4. 7.4 Device Functional Modes
      1. 7.4.1 Device Start-Up Modes
        1. 7.4.1.1 EEPROM Mode
      2. 7.4.2 PLL Operating Modes
        1. 7.4.2.1 Free-Run Mode
        2. 7.4.2.2 Lock Acquisition
        3. 7.4.2.3 Locked Mode
        4. 7.4.2.4 Holdover Mode
      3. 7.4.3 PLL Start-Up Sequence
      4. 7.4.4 Digitally-Controlled Oscillator (DCO) Mode
        1. 7.4.4.1 DCO Frequency Step Size
        2. 7.4.4.2 DCO Direct-Write Mode
    5. 7.5 Programming
      1. 7.5.1 Interface and Control
      2. 7.5.2 I2C Serial Communication
        1. 7.5.2.1 I2C Block Register Transfers
      3. 7.5.3 SPI Serial Communication
        1. 7.5.3.1 SPI Block Register Transfer
      4. 7.5.4 Register Map and EEPROM Map Generation
      5. 7.5.5 General Register Programming Sequence
      6. 7.5.6 EEPROM Programming Flow
        1. 7.5.6.1 EEPROM Programming Using Method #1 (Register Commit)
          1. 7.5.6.1.1 Write SRAM Using Register Commit
          2. 7.5.6.1.2 Program EEPROM
        2. 7.5.6.2 EEPROM Programming Using Method #2 (Direct Writes)
          1. 7.5.6.2.1 Write SRAM Using Direct Writes
          2. 7.5.6.2.2 User-Programmable Fields In EEPROM
      7. 7.5.7 Read SRAM
      8. 7.5.8 Read EEPROM
      9. 7.5.9 EEPROM Start-Up Mode Default Configuration
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Device Start-Up Sequence
      2. 8.1.2 Power Down (PDN) Pin
      3. 8.1.3 Power Rail Sequencing, Power Supply Ramp Rate, and Mixing Supply Domains
        1. 8.1.3.1 Mixing Supplies
        2. 8.1.3.2 Power-On Reset (POR) Circuit
        3. 8.1.3.3 Powering Up From a Single-Supply Rail
        4. 8.1.3.4 Power Up From Split-Supply Rails
        5. 8.1.3.5 Non-Monotonic or Slow Power-Up Supply Ramp
      4. 8.1.4 Slow or Delayed XO Start-Up
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curves
    3. 8.3 Best Design Practices
    4. 8.4 Power Supply Recommendations
      1. 8.4.1 Power Supply Bypassing
      2. 8.4.2 Device Current and Power Consumption
        1. 8.4.2.1 Current Consumption Calculations
        2. 8.4.2.2 Power Consumption Calculations
        3. 8.4.2.3 Example
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
      2. 8.5.2 Layout Example
      3. 8.5.3 Thermal Reliability
        1. 8.5.3.1 Support for PCB Temperature up to 105°C
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 TICS Pro
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 ドキュメントの更新通知を受け取る方法
    4. 9.4 サポート・リソース
    5. 9.5 Trademarks
    6. 9.6 静電気放電に関する注意事項
    7. 9.7 用語集
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報
Write SRAM Using Direct Writes

This SRAM direct write method can be used if storing a different device configuration to EEPROM without disrupting the current operational state of the device is required. This method requires that the SRAM/EEPROM map data is already generated, which can be exported by TICS Pro.

The SRAM can be directly written without modifying the active configuration registers through the following sequence:

  1. Write the most significant five bits of the SRAM address to R159 (MEMADR byte 1) and write the least significant eight bits of the SRAM address to R160 (MEMADR byte 0).
  2. Write the SRAM data byte to R162 (RAMDAT byte) for the address specified in the previous step in the same register transaction.
    • Any additional write (or read) transfers in the same transaction causes the SRAM address pointer to be auto-incremented and a subsequent write (or read) occurs at the next SRAM address.
    • Byte or Block write transfers to R162 can be used to write the entire SRAM map sequentially from Byte 0 to 252.
      • Bytes 253 to 255 must not be modified or overwritten and shall be reserved for TI internal use only.
    • Alternatively, writing to R159 and R160 to set the memory address pointer explicitly before each write to R162 is valid.
    • Access to the SRAM terminates at the end of current write transaction.
    • Note that reading the RAMDAT register also causes the memory address pointer to be auto-incremented.