JAJSKL8E june   2006  – october 2020 SN65LVDS302

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Revision History
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics
    6. 6.6  Input Electrical Characteristics
    7. 6.7  Output Electrical Characteristics
    8. 6.8  Timing Requirements
    9. 6.9  Switching Characteristics
    10. 6.10 Device Power Dissipation
    11.     Typical Characteristics
  8. Parameter Measurement Information
    1.     20
    2. 7.1 Power Consumption Tests
    3. 7.2 Typical IC Power Consumption Test Pattern
    4. 7.3 Maximum Power Consumption Test Pattern
    5. 7.4 Output Skew Pulse Position and Jitter Performance
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Swap Pin Functionality
      2. 8.3.2 Parity Error Detection and Handling
    4. 8.4 Device Functional Modes
      1. 8.4.1 Deserialization Modes
        1. 8.4.1.1 1-Channel Mode
        2. 8.4.1.2 2-Channel Mode
        3. 8.4.1.3 3-Channel Mode
      2. 8.4.2 Powerdown Modes
        1. 8.4.2.1 Shutdown Mode
        2. 8.4.2.2 Standby Mode
      3. 8.4.3 Active Modes
        1. 8.4.3.1 Acquire Mode (PLL Approaches Lock)
        2. 8.4.3.2 Receive Mode
      4. 8.4.4 Status Detect and Operating Modes Flow
  10. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Application Information
      2. 9.1.2 Preventing Increased Leakage Currents in Control Inputs
      3. 9.1.3 Calculation Example: HVGA Display
      4. 9.1.4 How to Determine Interconnect Skew and Jitter Budget
      5. 9.1.5 F/S Pin Setting and Connecting the SN65LVDS302 to an LCD Driver
      6. 9.1.6 How to Determine the LCD Driver Timing Margin
      7. 9.1.7 Typical Application Frequencies
    2. 9.2 Typical Applications
      1. 9.2.1 VGA Application
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 Power-Up and Power-Down Sequences
        3. 9.2.1.3 Application Curves
      2. 9.2.2 Dual LCD-Display Application
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Application Curve
  11. 10Power Supply Recommendations
  12. 11Layout
    1. 11.1 Layout Guidelines
  13. 12Device and Documentation Support
    1. 12.1 Community Resource
    2. 12.2 Trademarks
  14. 13Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Parity Error Detection and Handling

The SN65LVDS302 receiver performs error checking on the basis of a parity bit that is transmitted across the subLVDS interface from the transmitting device. Once the SN65LVDS302 detects the presence of the clock and the PLL has locked onto PCLK, then the parity is checked. Parity-error detection ensures detection of all single bit errors in one pixel and 50% of all multi-bit errors.

The parity bit covers the 27 bit data payload consisting of 24 bits of pixel data plus VS, HS, and DE. Odd Parity bit signalling is used. The parity error is output on the CPE pin. If the sum of the 27 data bits and the parity bit result in an odd number, the receive data are assumed to be valid. The CPE output is held low. If the sum equals an even number, parity error is declared. The CPE output indicates high for half a PCLK period. The CPE output is set with the data bit transition and cleared after 1/2 the data bit time. This allows counting every detected parity error with a simple counter connected to CPE.

GUID-F7D0B90E-6C21-4B13-A252-266C85E12F07-low.gifFigure 8-3 Parity Error Detection and Handling