SLVSFF3C December   2021  – October 2022 DRV8328

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specification
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings Comm
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information 1pkg
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Three BLDC Gate Drivers
        1. 8.3.1.1 PWM Control Modes
          1. 8.3.1.1.1 6x PWM Mode
          2. 8.3.1.1.2 3x PWM Mode
        2. 8.3.1.2 Device Hardware Interface
        3. 8.3.1.3 Gate Drive Architecture
          1. 8.3.1.3.1 Propagation Delay
          2. 8.3.1.3.2 Deadtime and Cross-Conduction Prevention
      2. 8.3.2 AVDD Linear Voltage Regulator
      3. 8.3.3 Pin Diagrams
      4. 8.3.4 Gate Driver Shutdown Sequence (DRVOFF)
      5. 8.3.5 Gate Driver Protective Circuits
        1. 8.3.5.1 PVDD Supply Undervoltage Lockout (PVDD_UV)
        2. 8.3.5.2 AVDD Power on Reset (AVDD_POR)
        3. 8.3.5.3 GVDD Undervoltage Lockout (GVDD_UV)
        4. 8.3.5.4 BST Undervoltage Lockout (BST_UV)
        5. 8.3.5.5 MOSFET VDS Overcurrent Protection (VDS_OCP)
        6. 8.3.5.6 VSENSE Overcurrent Protection (SEN_OCP)
        7. 8.3.5.7 Thermal Shutdown (OTSD)
    4. 8.4 Device Functional Modes
      1. 8.4.1 Gate Driver Functional Modes
        1. 8.4.1.1 Sleep Mode
        2. 8.4.1.2 Operating Mode
        3. 8.4.1.3 Fault Reset (nSLEEP Reset Pulse)
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Three Phase Brushless-DC Motor Control
        1. 9.2.1.1 Detailed Design Procedure
          1. 9.2.1.1.1 Motor Voltage
          2. 9.2.1.1.2 Bootstrap Capacitor and GVDD Capacitor Selection
          3. 9.2.1.1.3 Gate Drive Current
          4. 9.2.1.1.4 Gate Resistor Selection
          5. 9.2.1.1.5 System Considerations in High Power Designs
            1. 9.2.1.1.5.1 Capacitor Voltage Ratings
            2. 9.2.1.1.5.2 External Power Stage Components
            3. 9.2.1.1.5.3 Parallel MOSFET Configuration
          6. 9.2.1.1.6 Dead Time Resistor Selection
          7. 9.2.1.1.7 VDSLVL Selection
          8. 9.2.1.1.8 AVDD Power Losses
          9. 9.2.1.1.9 Power Dissipation and Junction Temperature Losses
      2. 9.2.2 Application Curves
  10. 10Power Supply Recommendations
    1. 10.1 Bulk Capacitance Sizing
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
    3. 11.3 Thermal Considerations
      1. 11.3.1 Power Dissipation
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Device Nomenclature
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Related Links
    4. 12.4 Receiving Notification of Documentation Updates
    5. 12.5 Community Resources
    6. 12.6 Trademarks
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information
Power Dissipation and Junction Temperature Losses

To calculate the junction temperature of the DRV8328 from power losses, use Equation 12. Note that the thermal resistance θJA depends on PCB configurations such as the ambient temperature, numbers of PCB layers, copper thickness on top and bottom layers, and the PCB area.

Equation 12. TJ=PlossW× θJAW+TA[]

The table below shows summary of equations for calculating each loss in the DRV8328.

Table 9-3 DRV8328 Power Losses

Loss type

Equation

Standby power

Pstandby = VPVDD x IPVDDS

GVDD CP mode (PVDD < 18V)

PLDO = 2 x VPVDD x IGVDD - VGVDD x IGVDD

GVDD LDO mode (PVDD > 18V)

PLDO = (VPVDD - VGVDD) x IGVDD

AVDD LDO

PLDO = (VPVDD - VAVDD) x IAVDD