SLVSFF3C December   2021  – October 2022 DRV8328

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specification
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings Comm
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information 1pkg
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Three BLDC Gate Drivers
        1. 8.3.1.1 PWM Control Modes
          1. 8.3.1.1.1 6x PWM Mode
          2. 8.3.1.1.2 3x PWM Mode
        2. 8.3.1.2 Device Hardware Interface
        3. 8.3.1.3 Gate Drive Architecture
          1. 8.3.1.3.1 Propagation Delay
          2. 8.3.1.3.2 Deadtime and Cross-Conduction Prevention
      2. 8.3.2 AVDD Linear Voltage Regulator
      3. 8.3.3 Pin Diagrams
      4. 8.3.4 Gate Driver Shutdown Sequence (DRVOFF)
      5. 8.3.5 Gate Driver Protective Circuits
        1. 8.3.5.1 PVDD Supply Undervoltage Lockout (PVDD_UV)
        2. 8.3.5.2 AVDD Power on Reset (AVDD_POR)
        3. 8.3.5.3 GVDD Undervoltage Lockout (GVDD_UV)
        4. 8.3.5.4 BST Undervoltage Lockout (BST_UV)
        5. 8.3.5.5 MOSFET VDS Overcurrent Protection (VDS_OCP)
        6. 8.3.5.6 VSENSE Overcurrent Protection (SEN_OCP)
        7. 8.3.5.7 Thermal Shutdown (OTSD)
    4. 8.4 Device Functional Modes
      1. 8.4.1 Gate Driver Functional Modes
        1. 8.4.1.1 Sleep Mode
        2. 8.4.1.2 Operating Mode
        3. 8.4.1.3 Fault Reset (nSLEEP Reset Pulse)
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Three Phase Brushless-DC Motor Control
        1. 9.2.1.1 Detailed Design Procedure
          1. 9.2.1.1.1 Motor Voltage
          2. 9.2.1.1.2 Bootstrap Capacitor and GVDD Capacitor Selection
          3. 9.2.1.1.3 Gate Drive Current
          4. 9.2.1.1.4 Gate Resistor Selection
          5. 9.2.1.1.5 System Considerations in High Power Designs
            1. 9.2.1.1.5.1 Capacitor Voltage Ratings
            2. 9.2.1.1.5.2 External Power Stage Components
            3. 9.2.1.1.5.3 Parallel MOSFET Configuration
          6. 9.2.1.1.6 Dead Time Resistor Selection
          7. 9.2.1.1.7 VDSLVL Selection
          8. 9.2.1.1.8 AVDD Power Losses
          9. 9.2.1.1.9 Power Dissipation and Junction Temperature Losses
      2. 9.2.2 Application Curves
  10. 10Power Supply Recommendations
    1. 10.1 Bulk Capacitance Sizing
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
    3. 11.3 Thermal Considerations
      1. 11.3.1 Power Dissipation
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Device Nomenclature
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Related Links
    4. 12.4 Receiving Notification of Documentation Updates
    5. 12.5 Community Resources
    6. 12.6 Trademarks
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information
3x PWM Mode

In 3x PWM mode, the INHx pin controls each half-bridge and supports two output states: low or high. The INLx pin is used to put the half bridge in the Hi-Z state. If the Hi-Z state is not required, tie all INLx pins to logic high. The corresponding INHx and INLx signals control the output state as listed in Table 8-3.

Table 8-3 3x PWM Mode Truth Table
INLx INHx GLx GHx SHx
0 X L L Hi-Z
1 0 H L L
1 1 L H H