SLVSHC7B December   2023  – September 2025 DRV8334

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
    1. 4.1 Pin Functions 48-Pin DRV8334
  6. Specification
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings DRV8334
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Requirements
    7. 5.7 SPI Timing Diagrams
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Three BLDC Gate Drivers
        1. 6.3.1.1 PWM Control Modes
          1. 6.3.1.1.1 6x PWM Mode
          2. 6.3.1.1.2 3x PWM Mode with INLx enable control
          3. 6.3.1.1.3 3x PWM Mode with SPI enable control
          4. 6.3.1.1.4 1x PWM Mode
          5. 6.3.1.1.5 SPI Gate Drive Mode
        2. 6.3.1.2 Gate Drive Architecture
          1. 6.3.1.2.1 Bootstrap diode
          2. 6.3.1.2.2 GVDD Charge pump/LDO
          3. 6.3.1.2.3 VCP Trickle Charge pump
          4. 6.3.1.2.4 Gate Driver Output
          5. 6.3.1.2.5 Passive and Semi-active pull-down resistor
          6. 6.3.1.2.6 TDRIVE Gate Drive Timing Control
          7. 6.3.1.2.7 Propagation Delay
          8. 6.3.1.2.8 Deadtime and Cross-Conduction Prevention
      2. 6.3.2 Low-Side Current Sense Amplifiers
        1. 6.3.2.1 Unidirectional Current Sense Operation
        2. 6.3.2.2 Bidirectional Current Sense Operation
      3. 6.3.3 Gate Driver Shutdown
        1. 6.3.3.1 DRVOFF Gate Driver Shutdown
        2. 6.3.3.2 Gate Driver Shutdown Timing Sequence
      4. 6.3.4 Gate Driver Protective Circuits
        1. 6.3.4.1  PVDD Supply Undervoltage Warning (PVDD_UVW)
        2. 6.3.4.2  PVDD Supply Undervoltage Lockout (PVDD_UV)
        3. 6.3.4.3  PVDD Supply Overvoltage Fault (PVDD_OV)
        4. 6.3.4.4  GVDD Undervoltage Lockout (GVDD_UV)
        5. 6.3.4.5  GVDD Overvoltage Fault (GVDD_OV)
        6. 6.3.4.6  BST Undervoltage Lockout (BST_UV)
        7. 6.3.4.7  BST Overvoltage Fault (BST_OV)
        8. 6.3.4.8  VCP Undervoltage Fault (CP_OV)
        9. 6.3.4.9  VCP Overvoltage Fault (CP_OV)
        10. 6.3.4.10 VDRAIN Undervoltage Fault (VDRAIN_UV)
        11. 6.3.4.11 VDRAIN Overvoltage Fault (VDRAIN_OV)
        12. 6.3.4.12 MOSFET VGS Monitoring Protection
        13. 6.3.4.13 MOSFET VDS Overcurrent Protection (VDS_OCP)
        14. 6.3.4.14 VSENSE Overcurrent Protection (SEN_OCP)
        15. 6.3.4.15 Phase Comparators
        16. 6.3.4.16 Thermal Shutdown (OTSD)
        17. 6.3.4.17 Thermal Warning (OTW)
        18. 6.3.4.18 OTP CRC
        19. 6.3.4.19 SPI Watchdog Timer
        20. 6.3.4.20 Phase Diagnostic
    4. 6.4 Device Functional Modes
      1. 6.4.1 Gate Driver Functional Modes
        1. 6.4.1.1 Sleep Mode
        2. 6.4.1.2 Operating Mode
      2. 6.4.2 Device Power Up Sequence
    5. 6.5 Programming
      1. 6.5.1 SPI
      2. 6.5.2 SPI Format
      3. 6.5.3 SPI Format Diagrams
  8. Register Maps
    1. 7.1 STATUS Registers
    2. 7.2 CONTROL Registers
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Typical Application with 48-pin package
        1. 8.2.1.1 External Components
      2. 8.2.2 Application Curves
    3. 8.3 Layout
      1. 8.3.1 Layout Guidelines
      2. 8.3.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Community Resources
    4. 9.4 Trademarks
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information
    1. 11.1 Package Option Addendum
    2. 11.2 Tape and Reel Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Layout Guidelines

  • Minimize length and impedance of GHx, SHx, GLx, and SLx traces. Use as few vias as possible to minimize parasitic inductance. TI recommends to increase these trace widths shortly after routing away from the device pin to minimize parasitic resistance.
  • Keep BSTx capacitors close to the respective pins
  • Keep CPH/CPL flying capacitor as close to the device pins as possible
  • Keep PVDD capacitors close to PVDD pin
  • Keep VDRAIN capacitor close to VDRAIN pin to supply steady switching current for the charge pump.
  • Additional bulk capacitance is required to bypass the high current path on the external MOSFETs. This bulk capacitance is placed to minimize the length of any high current paths through the external MOSFETs. The connecting metal traces are as wide as possible, with numerous vias connecting PCB layers. These practices minimize inductance and let the bulk capacitor deliver high current.
  • Connect SLx pins to MOSFET source, not directly to GND, for accurate VDS detection.
  • Route SNx/SPx pins in parallel from the sense resistor to the device. Place filtering components close to the device pins to minimize post-filter noise coupling. Maintain that SNx/SPx stays separated from GND plane to achieve best CSA accuracy. The bypass capacitor across VREF and GND is placed closer to the device pin.
  • The exposed pad is used for thermal dissipation, not electrical grounding, and has a high-impedance connection to the GND/AGND pins. Therefore, TI recommends to connect the exposed pad to the best thermal GND, and to connect the GND/AGND pins to the MCU-reference GND.