SLOSE79B August   2022  – October 2023 DRV8462

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Revision History
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
      1. 6.5.1 SPI Timing Requirements
      2. 6.5.2 STEP and DIR Timing Requirements
    6. 6.6 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Interface of Operation
      2. 7.3.2  Stepper Motor Driver Current Ratings
        1. 7.3.2.1 Peak Current Rating
        2. 7.3.2.2 RMS Current Rating
        3. 7.3.2.3 Full-Scale Current Rating
      3. 7.3.3  PWM Motor Drivers
      4. 7.3.4  Microstepping Indexer
      5. 7.3.5  Indexer Output
        1. 7.3.5.1 nHOME Output
      6. 7.3.6  Automatic Microstepping Mode
      7. 7.3.7  Custom Microstepping Table
      8. 7.3.8  Current Regulation
      9. 7.3.9  Internal Reference Voltage
      10. 7.3.10 Standstill Power Saving Mode
      11. 7.3.11 Current Regulation Decay Modes
        1. 7.3.11.1 Slow Decay
        2. 7.3.11.2 Mixed Decay
        3. 7.3.11.3 Smart tune Dynamic Decay
        4. 7.3.11.4 Smart tune Ripple Control
        5. 7.3.11.5 PWM OFF Time
        6. 7.3.11.6 Current Regulation Blanking Time and Deglitch Time
      12. 7.3.12 Current Sensing with External Resistor
      13. 7.3.13 Silent step decay mode
      14. 7.3.14 Auto-torque Dynamic Current Adjustment
        1. 7.3.14.1 Auto-torque Learning Routine
        2. 7.3.14.2 Current Control Loop
        3. 7.3.14.3 PD Control Loop
        4. 7.3.14.4 Efficiency Improvement with Auto-torque
      15. 7.3.15 Charge Pump
      16. 7.3.16 Linear Voltage Regulator
      17. 7.3.17 VCC Voltage Supply
      18. 7.3.18 Logic Level, Tri-Level and Quad-Level Pin Diagrams
      19. 7.3.19 Spread spectrum
      20. 7.3.20 Protection Circuits
        1. 7.3.20.1  VM Undervoltage Lockout
        2. 7.3.20.2  VCP Undervoltage Lockout (CPUV)
        3. 7.3.20.3  Logic Supply Power on Reset (POR)
        4. 7.3.20.4  Overcurrent Protection (OCP)
          1. 7.3.20.4.1 Latched Shutdown
          2. 7.3.20.4.2 Automatic Retry
        5. 7.3.20.5  Stall Detection
        6. 7.3.20.6  Open-Load Detection (OL)
        7. 7.3.20.7  Overtemperature Warning (OTW)
        8. 7.3.20.8  Thermal Shutdown (OTSD)
          1. 7.3.20.8.1 Latched Shutdown
          2. 7.3.20.8.2 Automatic Retry
        9. 7.3.20.9  Supply voltage sensing
        10. 7.3.20.10 nFAULT Output
        11. 7.3.20.11 Fault Condition Summary
      21. 7.3.21 Device Functional Modes
        1. 7.3.21.1 Sleep Mode
        2. 7.3.21.2 Disable Mode
        3. 7.3.21.3 Operating Mode
        4. 7.3.21.4 nSLEEP Reset Pulse
        5. 7.3.21.5 Functional Modes Summary
    4. 7.4 Programming
      1. 7.4.1 Serial Peripheral Interface (SPI) Communication
        1. 7.4.1.1 SPI Format
        2. 7.4.1.2 SPI for Multiple Target Devices in Daisy Chain Configuration
        3. 7.4.1.3 SPI for Multiple Target Devices in Parallel Configuration
    5. 7.5 Register Maps
      1. 7.5.1 Status Registers
        1. 7.5.1.1 FAULT (address = 0x00) [Default = 00h]
        2. 7.5.1.2 DIAG1 (address = 0x01) [Default = 00h]
        3. 7.5.1.3 DIAG2 (address = 0x02) [Default = 00h]
        4. 7.5.1.4 DIAG3 (address = 0x03) [Default = 00h]
      2. 7.5.2 Control Registers
        1. 7.5.2.1  CTRL1 (address = 0x04) [Default = 0Fh]
        2. 7.5.2.2  CTRL2 (address = 0x05) [Default = 06h]
        3. 7.5.2.3  CTRL3 (address = 0x06) [Default = 38h]
        4. 7.5.2.4  CTRL4 (address = 0x07) [Default = 49h]
        5. 7.5.2.5  CTRL5 (address = 0x08) [Default = 03h]
        6. 7.5.2.6  CTRL6 (address = 0x09) [Default = 20h]
        7. 7.5.2.7  CTRL7 (address = 0x0A) [Default = FFh]
        8. 7.5.2.8  CTRL8 (address = 0x0B) [Default = 0Fh]
        9. 7.5.2.9  CTRL9 (address = 0x0C) [Default = 10h]
        10. 7.5.2.10 CTRL10 (address = 0x0D) [Default = 80h]
        11. 7.5.2.11 CTRL11 (address = 0x0E) [Default = FFh]
        12. 7.5.2.12 CTRL12 (address = 0x0F) [Default = 20h]
        13. 7.5.2.13 CTRL13 (address = 0x10) [Default = 10h]
        14. 7.5.2.14 CTRL14 (address = 0x3C) [Default = 58h]
      3. 7.5.3 Indexer Registers
        1. 7.5.3.1 INDEX1 (address = 0x11) [Default = 80h]
        2. 7.5.3.2 INDEX2 (address = 0x12) [Default = 80h]
        3. 7.5.3.3 INDEX3 (address = 0x13) [Default = 80h]
        4. 7.5.3.4 INDEX4 (address = 0x14) [Default = 82h]
        5. 7.5.3.5 INDEX5 (address = 0x15) [Default = B5h]
      4. 7.5.4 Custom Microstepping Registers
        1. 7.5.4.1 CUSTOM_CTRL1 (address = 0x16) [Default = 00h]
        2. 7.5.4.2 CUSTOM_CTRL2 (address = 0x17) [Default = 00h]
        3. 7.5.4.3 CUSTOM_CTRL3 (address = 0x18) [Default = 00h]
        4. 7.5.4.4 CUSTOM_CTRL4 (address = 0x19) [Default = 00h]
        5. 7.5.4.5 CUSTOM_CTRL5 (address = 0x1A) [Default = 00h]
        6. 7.5.4.6 CUSTOM_CTRL6 (address = 0x1B) [Default = 00h]
        7. 7.5.4.7 CUSTOM_CTRL7 (address = 0x1C) [Default = 00h]
        8. 7.5.4.8 CUSTOM_CTRL8 (address = 0x1D) [Default = 00h]
        9. 7.5.4.9 CUSTOM_CTRL9 (address = 0x1E) [Default = 00h]
      5. 7.5.5 Auto torque Registers
        1. 7.5.5.1  ATQ_CTRL1 (address = 0x1F) [Default = 00h]
        2. 7.5.5.2  ATQ_CTRL2 (address = 0x20) [Default = 00h]
        3. 7.5.5.3  ATQ_CTRL3 (address = 0x21) [Default = 00h]
        4. 7.5.5.4  ATQ_CTRL4 (address = 0x22) [Default = 20h]
        5. 7.5.5.5  ATQ_CTRL5 (address = 0x23) [Default = 00h]
        6. 7.5.5.6  ATQ_CTRL6 (address = 0x24) [Default = 00h]
        7. 7.5.5.7  ATQ_CTRL7 (address = 0x25) [Default = 00h]
        8. 7.5.5.8  ATQ_CTRL8 (address = 0x26) [Default = 00h]
        9. 7.5.5.9  ATQ_CTRL9 (address = 0x27) [Default = 00h]
        10. 7.5.5.10 ATQ_CTRL10 (address = 0x28) [Default = 08h]
        11. 7.5.5.11 ATQ_CTRL11 (address = 0x29) [Default = 0Ah]
        12. 7.5.5.12 ATQ_CTRL12 (address = 0x2A) [Default = FFh]
        13. 7.5.5.13 ATQ_CTRL13 (address = 0x2B) [Default = 05h]
        14. 7.5.5.14 ATQ_CTRL14 (address = 0x2C) [Default = 0Fh]
        15. 7.5.5.15 ATQ_CTRL15 (address = 0x2D) [Default = 00h]
        16. 7.5.5.16 ATQ_CTRL16 (address = 0x2E) [Default = FFh]
        17. 7.5.5.17 ATQ_CTRL17 (address = 0x2F) [Default = 00h]
        18. 7.5.5.18 ATQ_CTRL18 (address = 0x30) [Default = 00h]
      6. 7.5.6 Silent Step Registers
        1. 7.5.6.1 SS_CTRL1 (address = 0x31) [Default = 00h]
        2. 7.5.6.2 SS_CTRL2 (address = 0x32) [Default = 00h]
        3. 7.5.6.3 SS_CTRL3 (address = 0x33) [Default = 00h]
        4. 7.5.6.4 SS_CTRL4 (address = 0x34) [Default = 00h]
        5. 7.5.6.5 SS_CTRL5 (address = 0x35) [Default = FFh]
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Stepper Motor Speed
      3. 8.2.3 Application Performance Plots
      4. 8.2.4 Thermal Application
        1. 8.2.4.1 Power Dissipation
        2. 8.2.4.2 Conduction Loss
        3. 8.2.4.3 Switching Loss
        4. 8.2.4.4 Power Dissipation Due to Quiescent Current
        5. 8.2.4.5 Total Power Dissipation
        6. 8.2.4.6 Device Junction Temperature Estimation
        7. 8.2.4.7 Thermal Images
  10. Thermal Considerations
    1. 9.1 DDV Package
    2. 9.2 DDW Package
    3. 9.3 PCB Material Recommendation
  11. 10Power Supply Recommendations
    1. 10.1 Bulk Capacitance
    2. 10.2 Power Supplies
  12. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  13. 12Device and Documentation Support
    1. 12.1 Related Documentation
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Support Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  14. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

DDV Package

The DDV package is designed to interface directly to a heat sink using a thermal interface compound in between, (for example, Ceramique from Arctic Silver, TIMTronics 413, etc.). The heat sink absorbs heat from the DRV8462 and transfers it to the air. With proper thermal management this process can reach equilibrium and heat can be continually transferred from the device. A concept digram of the heatsink on top of the DDV package is shown in Figure 9-11.

GUID-20220604-SS0I-9W5B-0TT4-VSP9JSMN8NQT-low.svgFigure 9-1 Heat sink on DDV Package

Care must be taken when mounting the heatsinks, ensuring good contact with thermal pads and not exceeding the mechanical stress capability of the parts to avoid breakage. Even though the DDV package is capable of tolerating up to 90 Newton load, in production it is recommended to apply less than 45 Newton load.

RθJA is a system thermal resistance from junction to ambient air. As such, it is a system parameter with the following components:

  • RθJC of the DDV Package (thermal resistance from junction to exposed pad)

  • Thermal resistance of the thermal interface material

  • Thermal resistance of the heat sink

RθJA = RθJC + thermal interface resistance + heat sink resistance

The thermal resistance of the thermal interface material can be determined from the area of the exposed metal package and manufacturer’s value for the area thermal resistance (expressed in °Cmm2/W). For example, a typical white thermal grease with a 0.0254 mm (0.001 inch) thick layer has 4.52 °Cmm2/W thermal resistance. The DDV package has an exposed area of 28.7 mm2. By dividing the area thermal resistance by the exposed metal area determines the thermal resistance for the interface material as 0.157°C/W.

Heat sink thermal resistance is predicted by the heat sink vendor, modeled using a continuous flow dynamics (CFD) model, or measured. The following are the various important parameters in selecting a heatsink.

  1. Thermal resistance
  2. Airflow
  3. Volumetric resistance
  4. Fin density
  5. Fin spacing
  6. Width
  7. Length

The thermal resistance is one parameter that changes dynamically depending on the airflow available.

Airflow is typically measured in LFM (linear feet per minute) or CFM (cubic feet per minute). LFM is a measure of velocity, whereas CFM is a measure of volume. Typically, fan manufacturers use CFM because fans are rated according to the quantity of air it can move. Velocity is more meaningful for heat removal at the board level, which is why the derating curves provided by most power converter manufacturers use this.

Typically, airflow is either classified as natural or forced convection.

  • Natural convection is a condition with no external induced flow and heat transfer depends on the air surrounding the heatsink. The effect of radiation heat transfer is very important in natural convection, as it can be responsible for approximately 25% of the total heat dissipation. Unless the component is facing a hotter surface nearby, it is imperative to have the heatsink surfaces painted to enhance radiation.

  • Forced convection occurs when the flow of air is induced by mechanical means, usually a fan or blower.

Limited thermal budget and space make the choice of a particular type of heatsink very important. This is where the volume of the heatsink becomes relevant. The volume of a heatsink for a given flow condition can be obtained by using the following equation:

Volume(heatsink) = volumetric resistance (Cm3 °C/W)/thermal resistance θSA (°C/W)

An approximate range of volumetric resistance is given in the following table:

Available Airflow
(LFM)
Volumetric Resistance
(Cm3 °C/W)
NC500 – 800
200150 - 250
50080 - 150
100050 - 80

The next important criterion for the performance of a heatsink is the width. It is linearly proportional to the performance of the heatsink in the direction perpendicular to the airflow. An increase in the width of a heatsink by a factor of two, three, or four increase the heat dissipation capability by a factor of two, three, or four. Similarly, the square root of the fin length used is approximately proportional to the performance of the heatsink in the direction parallel to the airflow. In case of an increase in the length of the heatsink by a factor of two, three, or four only increases the heat dissipation capability by a factor of 1.4, 1.7, or 2.

If the board has sufficient space, it is always beneficial to increase the width of a heatsink rather than the length of the heatsink. This is only the beginning of an iterative process before the correct and the actual heatsink design is achieved.

The heat sink must be supported mechanically at each end of the IC. This mounting ensures the correct pressure to provide good mechanical, thermal and electrical contact. The heat sink should be connected to GND or left floating.