SWCS095L August   2013  – February 2019 TPS659038-Q1 , TPS659039-Q1


  1. Device Summary
    1. 1.1 Features
    2. 1.2 Applications
    3. 1.3 Description
    4. 1.4 Simplified Block Diagram
  2. Revision History
  3. Device Comparison
  4. Pin Configuration and Functions
    1. 4.1 Pin Functions
      1.      Pin Functions
    2. 4.2 Device Ball Mapping – 13 × 13 nFBGA, 169 Balls, 0,8-mm Pitch
    3. 4.3 Signal Descriptions
  5. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information
    5. 5.5  Electrical Characteristics: Latch Up Rating
    6. 5.6  Electrical Characteristics: LDO Regulator
    7. 5.7  Electrical Characteristics: Dual-Phase (SMPS12 and SMPS45) and Triple-Phase (SMPS123 and SMPS457) Regulators
    8. 5.8  Electrical Characteristics: Stand-Alone Regulators (SMPS3, SMPS6, SMPS7, SMPS8, and SMPS9)
    9. 5.9  Electrical Characteristics: Reference Generator (Bandgap)
    10. 5.10 Electrical Characteristics: 16-MHz Crystal Oscillator, 32-kHz RC Oscillator, and Output Buffers
    11. 5.11 Electrical Characteristics: DC-DC Clock Sync
    12. 5.12 Electrical Characteristics: 12-Bit Sigma-Delta ADC
    13. 5.13 Electrical Characteristics: Thermal Monitoring and Shutdown
    14. 5.14 Electrical Characteristics: System Control Thresholds
    15. 5.15 Electrical Characteristics: Current Consumption
    16. 5.16 Electrical Characteristics: Digital Input Signal Parameters
    17. 5.17 Electrical Characteristics: Digital Output Signal Parameters
    18. 5.18 Electrical Characteristics: I/O Pullup and Pulldown Resistance
    19. 5.19 I2C Interface Timing Requirements
    20. 5.20 SPI Timing Requirements
    21. 5.21 Typical Characteristics
  6. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagrams
    3. 6.3 Feature Description
      1. 6.3.1  Power Management
      2. 6.3.2  Power Resources (Step-Down and Step-Up SMPS Regulators, LDOs)
        1. Step-Down Regulators
          1. Sync Clock Functionality
          2. Output Voltage and Mode Selection
          3. Current Monitoring and Short Circuit Detection
          4. POWERGOOD
          5. DVS-Capable Regulators
          6. Non DVS-Capable Regulators
          7. Step-Down Converters SMPS12 and SMPS123
            1.         a. Dual-Phase SMPS and Stand-Alone SMPS
            2.         b. Triple Phase SMPS
          8. Step-Down Converter SMPS45 and SMPS457
          9. Step-Down Converters SMPS3, SMPS6, SMPS7, SMPS8, and SMPS9
        2. LDOs – Low Dropout Regulators
          1. LDOVANA
          2. LDOVRTC
          3. LDO Bypass (LDO9)
          4. LDOUSB
          5. Other LDOs
      3. 6.3.3  Long-Press Key Detection
      4. 6.3.4  RTC
        1. General Description
        2. Time Calendar Registers
          1. TC Registers Read Access
          2. TC Registers Write Access
        3. RTC Alarm
        4. RTC Interrupts
        5. RTC 32-kHz Oscillator Drift Compensation
      5. 6.3.5  GPADC – 12-Bit Sigma-Delta ADC
        1. Asynchronous Conversion Request (SW)
        2. Periodic Conversion Request (AUTO)
        3. Calibration
      6. 6.3.6  General-Purpose I/Os (GPIO Terminals)
        1. REGEN Output
      7. 6.3.7  Thermal Monitoring
        1. Hot-Die Function (HD)
        2. Thermal Shutdown (TS)
        3. Temperature Monitoring With External NTC Resistor or Diode
      8. 6.3.8  Interrupts
      9. 6.3.9  Control Interfaces
        1. I2C Interfaces
          1. I2C Implementation
          2. F/S Mode Protocol
          3. HS Mode Protocol
        2. SPI Interface
          1. SPI Modes
          2. SPI Protocol
      10. 6.3.10 Device Identification
    4. 6.4 Device Functional Modes
      1. 6.4.1  Embedded Power Controller
      2. 6.4.2  State Transition Requests
        1. ON Requests
        2. OFF Requests
        3. SLEEP and WAKE Requests
      3. 6.4.3  Power Sequences
      4. 6.4.4  Start Up Timing and RESET_OUT Generation
      5. 6.4.5  Power On Acknowledge
        1. POWERHOLD Mode
        2. AUTODEVON Mode
      6. 6.4.6  BOOT Configuration
        1. Boot Terminal Selection
      7. 6.4.7  Reset Levels
      8. 6.4.8  Warm Reset
      9. 6.4.9  RESET_IN
      10. 6.4.10 Watchdog Timer (WDT)
      11. 6.4.11 System Voltage Monitoring
        1. Generating a POR
  7. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
        1.  Recommended External Components
        2.  SMPS Input Capacitors
        3.  SMPS Output Capacitors
        4.  SMPS Inductors
        5.  LDO Input Capacitors
        6.  LDO Output Capacitors
        7.  VCC1
          1. Meeting the Power Down Sequence
          2. Maintaining Sufficient Input Voltage
        8.  VIO_IN
        9.  16-MHz Crystal
        10. GPADC
      3. 7.2.3 Application Curves
  8. Power Supply Recommendations
  9. Layout
    1. 9.1 Layout Guidelines
    2. 9.2 Layout Example
  10. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 Third-Party Products Disclaimer
      2. 10.1.2 Device Nomenclature
    2. 10.2 Documentation Support
      1. 10.2.1 Related Documentation
    3. 10.3 Related Links
    4. 10.4 Receiving Notification of Documentation Updates
    5. 10.5 Community Resources
    6. 10.6 Trademarks
    7. 10.7 Electrostatic Discharge Caution
    8. 10.8 Glossary
  11. 11Mechanical, Packaging, and Orderable Information
    1. 11.1 Package Materials Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • ZWS|169
Thermal pad, mechanical data (Package|Pins)
Orderable Information


The TPS659038-Q1 and TPS659039-Q1 device are integrated power management integrated circuits (PMIC), both available in a 169-pin, 0.8-mm pitch, 12-mm x 12-mm nFBGA package. They are designed specifically for automotive applications. Both devices provide seven configurable step-down converter rails, with the ability to combine power rails and supply up to 9 A of output current in multi-phase mode. The TPS659038-Q1 device also provides eleven external LDOs, while the TPS659039-Q1 device provides six external LDOs. Both devices also come with a 12-bit GPADC with three external channels, eight configurable GPIOs, two I2C interface channels or one SPI interface channel, real-time clock module with calendar function, PLL for external clock sync and phase delay capability, and programmable power sequencer and control for supporting different processors and applications.

The seven step-down converter rails are consisting of nine high frequency switch mode converters with integrated FETs. They are capable of synchronizing to an external clock input and supports switching frequency between 1.7 MHz and 2.7 MHz. The SMPS12 and SMPS45 devices are dual-phase step-down converters, which can combine with the SMPS3 or SMPS7 device respectively and become triple-phase converters. In addition, the SMPS12, SMPS45, SMPS6, and SMPS8 device support dynamic voltage scaling by a dedicated I2C interface for optimum power savings.

The TPS659038-Q1 device contains 11 LDO regulators while the TPS659039-Q1 device contains six LDO regulators for external use. All of the LDOs support 0.9 V to 3.3 V output with 50-mV step. The devices are fully controllable by the I2C interface and can be supplied from either a system supply or a preregulated supply.

All LDOs and step-down converters can be controlled by the SPI or I2C interface, or by power request signals. In addition, voltage scaling registers allow transitioning the SMPS to different voltages by SPI, I2C, or roof and floor control.

The power-up and power-down controller is configurable and programmable through OTP. The TPS65903x-Q1 devices include a 32-kHz RC oscillator to sequence all resources during power up and power down. In cases where a fast start up is required, a 16-MHz crystal oscillator is also included to quickly generate a stable 32-kHz for the system. The device also includes an RTC module which provides date, time, calendar, and alarm capability, which is best utilized when a 16-MHz crystal or an external and high accuracy 32-kHz clock is present.

Eight Configurable GPIOs with multiplexed feature are available on the TPS659038-Q1 and TPS659039-Q1 devices. Three of the GPIOs, together with the REGEN1 pin can be configured and used as enable signals for external resources, which can be included into the power-up and power-down sequence. Both devices also include a general-purpose (GP) sigma-delta analog-to-digital converter (ADC) with three external input channels, which can be used as thermal or voltage and current monitors.


When operating the TPS659038-Q1 and TPS659039-Q1 devices using silicon revision 1.3 or earlier, without an external crystal, each SMPS regulating an output voltage greater than 1.8 V must be disabled before VCC is removed. Lowering VCC below the programmed VSYS_LO level while any SMPS is regulating an output voltage above 1.8 V may cause damage to the device. See Section 6.3.10 to identify the silicon version in the device.