JAJU840A April   2022  – April 2024

 

  1.   1
  2.   概要
  3.   参照情報
  4.   特長
  5.   アプリケーション
  6.   6
  7. 1システムの説明
  8. 2システム概要
    1. 2.1 ブロック図
    2. 2.2 設計の考慮事項
      1. 2.2.1 誘導性タッチ ボタン
      2. 2.2.2 センサ コイルの配置
      3. 2.2.3 複数の LDC からのデータ収集
      4. 2.2.4 磁気ダイヤルの実装
      5. 2.2.5 CORDIC アルゴリズム
    3. 2.3 主な使用製品
      1. 2.3.1 LDC3114-Q1
      2. 2.3.2 TMAG5273
      3. 2.3.3 DRV2605
      4. 2.3.4 TLV75518
      5. 2.3.5 TCA9534
      6. 2.3.6 PCA9543
      7. 2.3.7 センサ制御ボード
  9. 3ハードウェア、ソフトウェア、テスト要件、テスト結果
    1. 3.1 ファームウェアとプログラミング
      1. 3.1.1 動作モード 1
      2. 3.1.2 動作モード 2
      3. 3.1.3 動作モード 3
    2. 3.2 テスト設定
    3. 3.3 テスト結果
      1. 3.3.1 ABS の力応答
      2. 3.3.2 絶対ゲイン補正
      3. 3.3.3 ナイロンの力応答
      4. 3.3.4 ナイロンのゲイン補正
  10. 4ハードウェア コンポーネント
  11. 5設計とドキュメントのサポート
    1. 5.1 デザイン ファイル
      1. 5.1.1 回路図
      2. 5.1.2 BOM (部品表)
    2. 5.2 ツールとソフトウェア
    3. 5.3 ドキュメントのサポート
    4. 5.4 サポート・リソース
    5. 5.5 商標
  12. 6改訂履歴

複数の LDC からのデータ収集

LDC3114 は同じ I2C アドレスを使用するため、I2C マルチプレクサを使用して各デバイスと個別に通信します。各 LDC3114 はデフォルトの 40SPS で 4 個のセンサ コイルを駆動します。タッチ ボタンは高速動作を必要としないため、サンプル レートを上げる必要がなく、各デバイスのデータをポーリングしてもタッチ ボタンのレイテンシの問題は発生しません。バッテリ動作アプリケーションでは、I2C データを使用する代わりに、サンプル レートを下げて LDC3114 のデジタル出力を監視できます。このリファレンス デザインでは、メイン コントローラに接続するコネクタの GPIO ポート数が制限されていたため、代わりに各デバイスの OUT レジスタからデジタル出力が読み取られます。