JAJU964 December   2024

 

  1.   1
  2.   概要
  3.   リソース
  4.   特長
  5.   アプリケーション
  6.   6
  7. 1システムの説明
    1. 1.1 用語
    2. 1.2 主なシステム仕様
  8. 2システム概要
    1. 2.1 ブロック図
    2. 2.2 設計上の考慮事項
      1. 2.2.1 制御システム設計理論
        1. 2.2.1.1 PWM 変調
        2. 2.2.1.2 電流ループモデル
        3. 2.2.1.3 DCバス電圧制御ループ
        4. 2.2.1.4 DC 電圧のバランス コントローラ
    3. 2.3 主な使用製品
      1. 2.3.1 TMS320F280013x
      2. 2.3.2 UCC5350
      3. 2.3.3 AMC1350
      4. 2.3.4 TMCS1123
      5. 2.3.5 UCC28750
      6. 2.3.6 LM25180
      7. 2.3.7 ISOTMP35
      8. 2.3.8 TLV76133
      9. 2.3.9 TLV9062
    4. 2.4 ハードウェア設計
      1. 2.4.1  インダクタの設計
      2. 2.4.2  バス コンデンサの選択
      3. 2.4.3  入力AC電圧検出
      4. 2.4.4  出力 DCBUS 電圧検出
      5. 2.4.5  補助電源
      6. 2.4.6  絶縁型電源
      7. 2.4.7  インダクタ電流検出
      8. 2.4.8  ゲート ドライバ
      9. 2.4.9  絶縁型温度センシング
      10. 2.4.10 過電流および過電圧保護 (CMPSS)
  9. 3ハードウェア、ソフトウェア、テスト要件、テスト結果
    1. 3.1 ハードウェア要件
      1. 3.1.1 ハードウェアの概要
        1. 3.1.1.1 基板の概要
        2. 3.1.1.2 試験装置
    2. 3.2 ソフトウェア要件
      1. 3.2.1 GUI の概要
        1. 3.2.1.1 テスト設定
        2. 3.2.1.2 GUI ソフトウェアの概要
        3. 3.2.1.3 GUI によるテスト手順
      2. 3.2.2 ファームウェアの概要
        1. 3.2.2.1 Code Composer Studio™ 内でプロジェクトを開く
        2. 3.2.2.2 プロジェクト構造
        3. 3.2.2.3 テスト設定
        4. 3.2.2.4 プロジェクトの実行
          1. 3.2.2.4.1 INCR_BUILD 1:開ループ
            1. 3.2.2.4.1.1 プロジェクトの設定、ビルド、およびロード
            2. 3.2.2.4.1.2 デバッグ環境設定ウィンドウ
            3. 3.2.2.4.1.3 リアルタイム エミュレーションの使用
            4. 3.2.2.4.1.4 コードの実行 (ビルド 1)
          2. 3.2.2.4.2 INCR_BUILD 2:閉電流ループ
            1. 3.2.2.4.2.1 コードの実行 (ビルド 2)
            2. 3.2.2.4.2.2 プロジェクトのビルドおよびロードとデバッグの設定
          3. 3.2.2.4.3 INCR_BUILD 3:閉電圧および電流ループ
            1. 3.2.2.4.3.1 プロジェクトのビルドおよびロードとデバッグの設定
            2. 3.2.2.4.3.2 コードの実行 (ビルド 3)
          4. 3.2.2.4.4 INCR_BUILD 4:閉バランス、電圧、および電流ループ
            1. 3.2.2.4.4.1 プロジェクトのビルドおよびロードとデバッグの設定
            2. 3.2.2.4.4.2 コードの実行 (ビルド 4)
    3. 3.3 テスト結果
      1. 3.3.1  IGBT ゲートの立ち上がり時間および立ち下がり時間
      2. 3.3.2  パワーオン シーケンス
      3. 3.3.3  GUI による PFC の開始
      4. 3.3.4  380VAC、9kW 時のゼロ クロス
      5. 3.3.5  380VAC、10kW 時の電流リップル
      6. 3.3.6  グリッド電力での 10kW 負荷テスト
      7. 3.3.7  AC 電源での 9kW 負荷テスト
      8. 3.3.8  電力アナライザの結果
      9. 3.3.9  熱性能
      10. 3.3.10 電圧短絡割り込みテスト
      11. 3.3.11 効率、iTHD、力率のテスト結果
  10. 4設計とドキュメントのサポート
    1. 4.1 デザイン ファイル
      1. 4.1.1 回路図
      2. 4.1.2 部品表 (BOM)
    2. 4.2 ツールとソフトウェア
    3. 4.3 ドキュメントのサポート
    4. 4.4 サポート・リソース
    5. 4.5 商標
  11. 5著者について

過電流および過電圧保護 (CMPSS)

大半のパワー エレクトロニクス コンバータは、過電流と過電圧イベントから保護する必要があります。図 2-15 に示すように、このデザインでは複数のコンパレータが必要で、トリップの基準を生成する必要があります。

TIDA-010257 コンパレータと基準発生器を使用したPWMの検出信号生成図 2-15 コンパレータと基準発生器を使用したPWMの検出信号生成

TMS320F280013x などの C2000 MCU を使用することで、CMPSS の一部としてオンチップ ウィンドウ コンパレータが搭載され、PWM モジュールに内部接続されるため、PWM の高速トリップが可能となり、このような回路はすべて不要となります。図 2-16 に示すように、オンチップ リソースを使用することで追加部品が不要となり、最終アプリケーションにおいて基板面積を節約し、コスト効率を高めることができます。

TIDA-010257 過電流および過電圧保護用のコンパレータ サブシステム (CMPSS)図 2-16 過電流および過電圧保護用のコンパレータ サブシステム (CMPSS)