SLAAER4 March   2025 AFE781H1 , AFE782H1 , AFE881H1 , AFE882H1 , DAC8740H , DAC8741H , DAC8742H

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Introduction
    1. 1.1 The 4-20mA Loop
    2. 1.2 The HART Protocol
      1. 1.2.1 Adding HART to the 4-20mA Loop
      2. 1.2.2 HART FSK
  5. 2AFE882H1 EVM-Based HART Transmitter
    1. 2.1 AFE882H1 HART Modem
    2. 2.2 AFE882H1 Evaluation Module
    3. 2.3 HART Transmitter Construction
      1. 2.3.1 Detailed Schematic
        1. 2.3.1.1 Input Protection
        2. 2.3.1.2 Start Up With Low-Dropout Regulator
        3. 2.3.1.3 Voltage-to-Current Stage
        4. 2.3.1.4 Voltage-to-Current Calculation
        5. 2.3.1.5 HART Signal Transmission
        6. 2.3.1.6 HART Input Protection
        7. 2.3.1.7 HART Transmitter Board
        8. 2.3.1.8 Current Consumption
      2. 2.3.2 HART Protocol Stack
  6. 3HART Testing and Registration
    1. 3.1  HART History and the FieldComm Group
    2. 3.2  HART Testing Overview
      1. 3.2.1 HART Protocol Specifications
      2. 3.2.2 HART Protocol Test Specifications
      3. 3.2.3 Field Transmitter Device Testing
    3. 3.3  HART Test Equipment
    4. 3.4  HART Physical Layer Testing
      1. 3.4.1 FSK Sinusoid Test
      2. 3.4.2 Carrier Start and Stop Time Tests
      3. 3.4.3 Carrier Start and Stop Transient Tests
      4. 3.4.4 Output Noise During Silence
      5. 3.4.5 Analog Rate of Change Test
      6. 3.4.6 Receive Impedance Test
      7. 3.4.7 Noise Sensitivity Test
      8. 3.4.8 Carrier Detect Test
    5. 3.5  Data Link Layer Tests
      1. 3.5.1 Data Link Layer Test Specifications
      2. 3.5.2 Data Link Layer Test Logs
    6. 3.6  Universal Command Tests
    7. 3.7  Common-Practice Command Tests
    8. 3.8  Device Specific Command Tests
    9. 3.9  HART Protocol Test Submission
    10. 3.10 HART Registration
  7. 4Summary
  8. 5Acknowledgments
  9. 6References

The HART Protocol

HART is a backwards-compatible enhancement to 4-20mA instrumentation that allows two-way communication with smart, microprocessor-based field devices.

The HART frequency shift keyed (FSK) signal is superimposed onto a 4-20mA loop current and modulated for two-way digital communications. This is important because 4-20mA loops are already a well-adopted standard in factory automation and control. The fact that this technology is backwards compatible and can be used with already-existing infrastructure means that this is easy to adopt and cost effective.

HART is a standardized communication protocol, where the controller sends commands, and a field transmitter returns standardized responses. The application layer data received from commands communicates device status and diagnostics. Process data can be sent to include the data’s floating-point digital values, the engineering units of the primary variable, and other information about the process the device is measuring.

There are several different versions of the HART protocol. This application note discusses only the basic HART FSK signal in a field transmitter on a 4-20mA loop. For more in-depth information about the HART protocol see A Basic Guide to the HART Protocol.