SCDS436A September   2023  – December 2024 TMUX9616 , TMUX9616N

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Thermal Information
    4. 5.4 Recommended Operating Conditions
    5. 5.5 Electrical Characteristics: TMUX9616
    6. 5.6 Switching Characteristics: TMUX9616
    7. 5.7 Digital Timings: TMUX9616
    8. 5.8 Timing Diagrams
    9. 5.9 Typical Characteristics
  7. Parameter Measurement Information
    1. 6.1 Off-Leakage Current
    2. 6.2 Device Turn On/Off Time
    3. 6.3 Off Isolation
    4. 6.4 Inter-Channel Crosstalk
    5. 6.5 Output Voltage Spike
    6. 6.6 Switch DC Offset Voltage
    7. 6.7 Isolation Diode Current
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Wide Input Signal Range (up to ±110 V, 220 VPP)
      2. 7.3.2 Bidirectional Operation
      3. 7.3.3 Device Digital Logic Control
      4. 7.3.4 Latch-Up Immunity by Device Construction
    4. 7.4 Device Functional Modes
      1. 7.4.1 Normal Mode
      2. 7.4.2 Device Power Up
    5. 7.5 Device Logic Table
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Latch-Up Immunity by Device Construction

Latch-up is a condition where a low impedance path is created between a supply pin and ground. This condition is caused by a trigger (current injection or overvoltage), but once activated, the low impedance path remains even after the trigger is no longer present. This low impedance path may cause system upset or catastrophic damage due to excessive current levels. The latch-up condition typically requires a power cycle to eliminate the low impedance path.

The TMUX9616x is constructed on silicon on insulator (SOI) based process where an oxide layer is added between the PMOS and NMOS transistor of each CMOS switch to prevent parasitic structures from forming. The oxide layer is also known as an insulating trench and prevents triggering of latch up events due to overvoltage, fast voltage slew rates, and current injections. The latch-up immunity feature allows the TMUX9616x to be used in harsh environments. For more information on latch-up immunity, refer to Using Latch Up Immune Multiplexers to Help Improve System Reliability.