SGLS423A February   2025  – December 2025 SN55LVRA4-SEP

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Switching Characteristics
    7. 5.7 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Receiver Output States
      2. 7.3.2 General Purpose Comparator
      3. 7.3.3 Common-Mode Range vs Supply Voltage
    4. 7.4 Equivalent Input and Output Schematic Diagrams
    5. 7.5 Device Functional Modes
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Detailed Design Procedure
      2. 8.2.2 Design Requirements
      3. 8.2.3 Application Performance Plots
      4. 8.2.4 Cold Sparing
    3. 8.3 Active Failsafe Feature
    4. 8.4 ECL/PECL-to-LVTTL Conversion with TI's LVDS Receiver
    5. 8.5 Test Conditions
    6. 8.6 Equipment
  10. Power Supply Recommendations
    1. 9.1 Supply Bypass Capacitance
  11. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Microstrip vs. Stripline Topologies
      2. 10.1.2 Dielectric Type and Board Construction
      3. 10.1.3 Recommended Stack Layout
      4. 10.1.4 Separation Between Traces
      5. 10.1.5 Crosstalk and Ground Bounce Minimization
    2. 10.2 Layout Example
  12. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Support Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  13. 12Revision History
  14. 13Mechanical, Packaging, and Orderable Information

Active Failsafe Feature

A differential line receiver commonly has a failsafe circuit to prevent the output from switching on input noise. Current LVDS failsafe implementation require either external components with subsequent reductions in signal quality or integrated solutions with limited application. This family of receivers has a new integrated failsafe that solves the limitations seen in present solutions. A detailed theory of operation is presented in the Active Fail-Safe in TI’s LVDS Receivers application note.

Figure 8-3 shows one receiver channel with active failsafe, which consists of a main receiver that can respond to a high-speed input differential signal. Also connected to the input pair are two failsafe receivers that form a window comparator. The window comparator has a much slower response than the main receiver and the comparator detects when the input differential falls below 80mV. A 600ns failsafe timer filters the window comparator outputs. When failsafe is asserted, the failsafe logic drives the main receiver output to logic high.

SN55LVRA4-SEP Receiver with active
                    failsafeFigure 8-3 Receiver with active failsafe