SLAU958A January   2025  – March 2025 MSPM0G3507

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Introduction
  5. 2Hardware Setup
    1. 2.1  EVM Hardware Setup
      1. 2.1.1 EVM Hardware Support
    2. 2.2  Peripheral Configurations for IPD Usage
    3. 2.3  Pin Configurations for PWM Outputs
    4. 2.4  Pin Configurations for ADC Currents
    5. 2.5  Pin Configurations for ADC Voltages
    6. 2.6  Pin Configurations for Faults
    7. 2.7  Pin Configurations for GPIO Output Functions
    8. 2.8  Pin Configurations for SPI Communication
    9. 2.9  Pin Configurations for UART Communication
    10. 2.10 External Connections for Evaluation Boards
  6. 3Software Setup
  7. 4GUI Setup
    1. 4.1 Serial Port Configuration
    2. 4.2 GUI Home Page
    3. 4.3 System Configurations
    4. 4.4 Register Map
    5. 4.5 Motor Tuning Page
    6. 4.6 Collateral Page
    7. 4.7 Loading and Saving Register Configurations
  8. 5Register Map
    1. 5.1 Register Map Page in GUI
    2. 5.2 User Control Registers (Base Address = 0x20200400h)
      1. 5.2.1 Speed Control Register (Offset = 0h) [Reset = 00000000h]
      2. 5.2.2 Algo Debug Control 1 Register (Offset = 4h) [Reset = 00000000h]
      3. 5.2.3 Algo Debug Control 2 Register (Offset = 8h) [Reset = 00000000h]
      4. 5.2.4 Algo Debug Control 3 Register (Offset = Ch) [Reset = 00000000h]
      5. 5.2.5 DAC Configuration Register (Offset = 10h) [Reset = 00000000h]
    3. 5.3 User Input Registers (Base Address = 0x20200000h)
      1. 5.3.1  SYSTEM_PARAMETERS (Offset = 0h)
      2. 5.3.2  ISD_CONFIG Register (Offset = 3Ch) [Reset = 00000000h]
      3. 5.3.3  MOTOR_STARTUP1 Register (Offset = 40h) [Reset = 00000000h]
      4. 5.3.4  MOTOR_STARTUP2 Register (Offset = 44h) [Reset = 00000000h]
      5. 5.3.5  CLOSED_LOOP1 Register (Offset = 48h) [Reset = 00000000h]
      6. 5.3.6  CLOSED_LOOP2 Register (Offset = 4Ch) [Reset = 00000000h]
      7. 5.3.7  FIELD_CTRL Register (Offset = 50h) [Reset = 00000000h]
      8. 5.3.8  FAULT_CONFIG1 Register (Offset = 54h) [Reset = 00000000h]
      9. 5.3.9  FAULT_CONFIG2 Register (Offset = 58h) [Reset = 00000000h]
      10. 5.3.10 MISC_ALGO Register (Offset = 5Ch) [Reset = 00000000h]
      11. 5.3.11 PIN_CONFIG Register (Offset = 60h) [Reset = 00000000h]
      12. 5.3.12 PERI_CONFIG Register (Offset = 64h) [Reset = 00000000h]
    4. 5.4 User Status Registers (Base Address = 0x20200430h)
  9. 6Basic Tuning
    1. 6.1 System Configuration Parameters
      1. 6.1.1 Configuring System Parameters From GUI
      2. 6.1.2 Motor Resistance in Milliohms (mΩ)
      3. 6.1.3 Motor Inductance in Microhenries (μH)
      4. 6.1.4 Saliency of IPMSM Motor
      5. 6.1.5 Motor BEMF Constant
      6. 6.1.6 Base Voltage (V)
      7. 6.1.7 Base Current (A)
      8. 6.1.8 Maximum Motor Electrical Speed (Hz)
      9. 6.1.9 Maximum Motor Power(W)
    2. 6.2 Control Configurations for Basic Motor Spinning
      1. 6.2.1 Basic Motor Startup
        1. 6.2.1.1 Disable ISD
        2. 6.2.1.2 Motor Start Option - Align
        3. 6.2.1.3 Motor Open Loop Ramp
        4. 6.2.1.4 Motor Open Loop Debug
      2. 6.2.2 Controller Configuration for Spinning the Motor in Closed Loop
        1. 6.2.2.1 BEMF estimation for Sensorless Rotor Position detection
          1. 6.2.2.1.1 Enhanced Sliding Mode Observer
          2. 6.2.2.1.2 Finite BEMF Estimation Based on Motor model
        2. 6.2.2.2 Rotor Position and Speed Estimation With PLL
        3. 6.2.2.3 PI Controller Tuning for Closed Loop Speed Control
          1. 6.2.2.3.1 Current Loop PI Tuning
          2. 6.2.2.3.2 Speed Controller Tuning
        4. 6.2.2.4 Testing for Successful Startup Into Closed Loop
    3. 6.3 Fault Handling
      1. 6.3.1 Abnormal BEMF Fault [ABN_BEMF]
      2. 6.3.2 Monitoring Power Supply Voltage Fluctuations for Voltage Out of Bound Faults
      3. 6.3.3 No Motor Fault [NO_MTR]
  10. 7Advanced Tuning
    1. 7.1 Control Configurations Tuning
      1. 7.1.1  Control Mode of Operation
        1. 7.1.1.1 Closed Loop Speed Control Mode
        2. 7.1.1.2 Closed Loop Power Control Mode
        3. 7.1.1.3 Closed Loop Torque Control Mode
        4. 7.1.1.4 Voltage Control Mode
      2. 7.1.2  Initial Speed Detection of the Motor for Reliable Motor Resynchronization
      3. 7.1.3  Unidirectional Motor Drive Detecting Backward Spin
      4. 7.1.4  Preventing Back Spin of Rotor During Startup
        1. 7.1.4.1 Option 1: IPD
        2. 7.1.4.2 Option 2: Slow First Cycle
      5. 7.1.5  Gradual and Smooth Start up Motion
      6. 7.1.6  Faster Startup Timing
        1. 7.1.6.1 Option 1: Initial Position Detection (IPD)
        2. 7.1.6.2 Option 2: Slow First Cycle
      7. 7.1.7  Stopping Motor Quickly
      8. 7.1.8  Flux Weakening: Operating Motor at Speeds Higher than Rated Speed
      9. 7.1.9  Maximum Torque Per Ampere : Improve Efficiency of IPMSM Motors
      10. 7.1.10 Preventing Supply Voltage Overshoot During Motor Stop.
      11. 7.1.11 Protecting the Power Supply
      12. 7.1.12 FOC Bandwidth Selection
  11. 8Hardware Configurations
    1. 8.1 Direction Configuration
    2. 8.2 Brake Configuration
    3. 8.3 Main.h Definitions
      1. 8.3.1 Sense Amplifier Configuration
      2. 8.3.2 Driver Propagation Delay
      3. 8.3.3 Driver Min On Time
      4. 8.3.4 Current Shunt Configuration Selection
        1. 8.3.4.1 Three Shunt Configurations
        2. 8.3.4.2 Dual Shunt Configuration
        3. 8.3.4.3 Single Shunt Configuration
      5. 8.3.5 CSA Offset Scaling Factor Selection
    4. 8.4 Real-Time Variable Tracking
  12. 9Revision History

Rotor Position and Speed Estimation With PLL

In conventional SMO based rotor position estimators, the rotor flux angle is determined based on the arc tangent of estimated stationary co-ordinate BEMF values as in Equation 16:

Equation 16. θ ̂ e =   -   t a n - 1 e ̂ α   e ̂ β  

With this method, the accuracy of the position and velocity estimations are affected due to the existence of noise and harmonic components. To eliminate this issue, the PLL model can be used for velocity and position estimations in the sensorless control structure of the PMSM. The estimated BEMF values e ̂ α   a n d   e ̂ β   can be used with a PLL model to converge motor angular velocity and compute the rotor position as shown in Figure 6-14.


 PLL-Based Rotor Speed and
                    Position Estimation

Figure 6-14 PLL-Based Rotor Speed and Position Estimation

Since e ̂ α   = E c o s θ   ,   e ̂ β   = E s i n θ and E = K e ×   ω ; the error in angle θ between the actual rotor position θ   and the estimated rotor angle θ ̂ e can be computed as

Equation 17. e q = E c o s θ s i n θ ̂ e   -   E s i n θ c o s θ ̂ e ,       e q =   E s i n θ   -   θ ̂ e ;
Equation 18. a s     θ   a p p r o a c h e s   n e a r   0   ,   e q E θ   -   θ ̂ e   ,   w i t h   n o r m a l i z a t i o n   e n =   θ   -   θ ̂ e ;

The closed loop transfer function of above plant can be treated as second order transfer function including PI controller and an integrator for position estimator defined by Equation 19:

Equation 19. θ ̂ e θ   =   k p s   +   k i s 2   +   k p s   + k i   =   2 ζ ω n s   +   ω n 2   s 2   +   2 ζ ω n s   +   ω n 2

here the PI gains are defined by k p   =   2 ζ ω n   ,   k i   =   ω n 2 where ζ is the damping factor of the response and ω n is the natural frequency of the second order response.

As the feedforward term for estimated speed is added , the PI controller estimates only the error in speed thus Kp and Ki can be independent of speeds and can be fixed values unless noise or sudden disturbances in load are expected. By default the Kp and Ki values are defined in "angleTrackingPLL.c" under modules/algoLib/libraries/semiCloseLoopEstim/source.