SLLSFM2A November   2024  – October 2025 TCAN2855-Q1 , TCAN2857-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  IEC ESD Ratings
    4. 6.4  Recommended Operating Conditions
    5. 6.5  Thermal Information
    6. 6.6  Supply Characteristics
    7. 6.7  Electrical Characteristics
    8. 6.8  Timing Requirements
    9. 6.9  Switching Characteristics
    10. 6.10 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  VSUP Pin
      2. 8.3.2  VCC1 Regulator
      3. 8.3.3  VCC2 Regulator
        1. 8.3.3.1 VCC2 Short to Battery Protection
      4. 8.3.4  nRST Pin
      5. 8.3.5  VEXCC Regulator
      6. 8.3.6  CAN FD Transceiver
        1. 8.3.6.1 Driver and Receiver Function
        2. 8.3.6.2 CAN Bus Biasing
      7. 8.3.7  LIN Transceiver
        1. 8.3.7.1 LIN Transmitter Characteristics
        2. 8.3.7.2 LIN Receiver Characteristics
        3. 8.3.7.3 LIN Termination
      8. 8.3.8  GND
      9. 8.3.9  LIMP Pin
      10. 8.3.10 High-side Switches (HSS1- HSS4)
      11. 8.3.11 WAKE1, WAKE2 and WAKE3/DIR Pins
        1. 8.3.11.1 WAKE Pins Alternate Configurations
          1. 8.3.11.1.1 VBAT monitoring
          2. 8.3.11.1.2 Direct Drive
      12. 8.3.12 SDO Pin
      13. 8.3.13 nCS Pin
      14. 8.3.14 SCK Pin
      15. 8.3.15 SDI Pin
      16. 8.3.16 Interrupt Function (nINT)
      17. 8.3.17 SW Pin
      18. 8.3.18 GFO Pin
    4. 8.4 Device Functional Modes
      1. 8.4.1 Init Mode
      2. 8.4.2 Normal Mode
      3. 8.4.3 Standby Mode
      4. 8.4.4 Restart Mode
      5. 8.4.5 Fail-safe Mode
        1. 8.4.5.1 SBC Faults
        2. 8.4.5.2 CAN Transceiver Faults
        3. 8.4.5.3 LIN Transceiver Faults ( TCAN2857-Q1)
      6. 8.4.6 Sleep Mode
      7. 8.4.7 Wake Functions
        1. 8.4.7.1 CAN Bus Wake Using CRXD Request (BWRR) in Sleep Mode
        2. 8.4.7.2 LIN Bus Wake
        3. 8.4.7.3 Local Wake Up (LWU) via WAKEx Input Terminal
          1. 8.4.7.3.1 Static Wake
          2. 8.4.7.3.2 Cyclic Sensing Wake
        4. 8.4.7.4 Cyclic Wake
        5. 8.4.7.5 Direct Drive in Sleep Mode
        6. 8.4.7.6 Selective Wake-up
          1. 8.4.7.6.1 Selective Wake Mode
          2. 8.4.7.6.2 Frame Detection
          3. 8.4.7.6.3 Wake-Up Frame (WUF) Validation
          4. 8.4.7.6.4 WUF ID Validation
          5. 8.4.7.6.5 WUF DLC Validation
          6. 8.4.7.6.6 WUF Data Validation
          7. 8.4.7.6.7 Frame Error Counter
          8. 8.4.7.6.8 CAN FD Frame Tolerance
          9. 8.4.7.6.9 8Mbps Filtering
      8. 8.4.8 Protection Features
        1. 8.4.8.1  Fail-safe Features
          1. 8.4.8.1.1 Sleep Mode Using Sleep Wake Error
        2. 8.4.8.2  Device Reset
        3. 8.4.8.3  Floating Terminals
        4. 8.4.8.4  TXD Dominant Time Out (DTO)
        5. 8.4.8.5  LIN Bus Stuck Dominant System Fault: False Wake Up Lockout
        6. 8.4.8.6  CAN Bus Short Circuit Current Limiting
        7. 8.4.8.7  Thermal Shutdown
        8. 8.4.8.8  Under and Over Voltage Lockout and Unpowered Device
          1. 8.4.8.8.1 Under-voltage
            1. 8.4.8.8.1.1 VSUP and VHSS Under-voltage
            2. 8.4.8.8.1.2 VCC1 Under-voltage
            3. 8.4.8.8.1.3 VCC2 and VEXCC Under-voltage
            4. 8.4.8.8.1.4 VCAN Under-voltage
          2. 8.4.8.8.2 VCC1, VCC2 and VEXCC Over-voltage
          3. 8.4.8.8.3 VCC1, VCC2 and VEXCC Short Circuit
        9. 8.4.8.9  Watchdog
          1. 8.4.8.9.1 Watchdog Error Counter and Action
          2. 8.4.8.9.2 Watchdog SPI Programming
            1. 8.4.8.9.2.1 Watchdog Configuration Registers Lock and Unlock
          3. 8.4.8.9.3 Watchdog Timing
          4. 8.4.8.9.4 Question and Answer Watchdog
            1. 8.4.8.9.4.1 WD Question and Answer Basic Information
            2. 8.4.8.9.4.2 Question and Answer Register and Settings
            3. 8.4.8.9.4.3 WD Question and Answer Value Generation
              1. 8.4.8.9.4.3.1 Answer Comparison
              2. 8.4.8.9.4.3.2 Sequence of the 2-bit Watchdog Answer Counter
            4. 8.4.8.9.4.4 Question and Answer WD Example
              1. 8.4.8.9.4.4.1 Example Configuration for Desired Behavior
              2. 8.4.8.9.4.4.2 Example of Performing a Question and Answer Sequence
        10. 8.4.8.10 Bus Fault Detection and Communication
    5. 8.5 Programming
      1. 8.5.1 SPI Communication
        1. 8.5.1.1 Cyclic Redundancy Check
        2. 8.5.1.2 Chip Select Not (nCS):
        3. 8.5.1.3 SPI Clock Input (SCK):
        4. 8.5.1.4 SPI Data Input (SDI):
        5. 8.5.1.5 SPI Data Output (SDO):
      2. 8.5.2 EEPROM
  10. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 CAN BUS Loading, Length and Number of Nodes
      2. 9.1.2 CAN Termination
        1. 9.1.2.1 Termination
      3. 9.1.3 Channel Expansion
        1. 9.1.3.1 Channel Expansion for LIN
        2. 9.1.3.2 Channel Expansion for CAN FD
      4. 9.1.4 Device Brownout information
      5. 9.1.5 Typical Application
        1. 9.1.5.1 Design Requirements
          1. 9.1.5.1.1 LTXD Dominant State Timeout Application Note
        2. 9.1.5.2 Detailed Design Procedures
          1. 9.1.5.2.1 CAN Detailed Design Procedure
          2. 9.1.5.2.2 LIN Detailed Design Procedures
        3. 9.1.5.3 Application Curves
    2. 9.2 Power Supply Recommendations
    3. 9.3 Layout
      1. 9.3.1 Layout Guidelines
      2. 9.3.2 Layout Example
  11. 10Registers
    1. 10.1 Registers
      1. 10.1.1  DEVICE_ID_y Register (Address = 00h + formula) [reset = xxh]
      2. 10.1.2  REV_ID Register (Address = 08h) [reset = 2Xh]
      3. 10.1.3  SPI_CONFIG Register (Address = 09h) [reset = 00h]
      4. 10.1.4  CRC_CNTL Register (Address = 0Ah) [reset = 00h]
      5. 10.1.5  CRC_POLY_SET (Address = 0Bh) [reset = 00h]
      6. 10.1.6  SBC_CONFIG (Address = 0Ch) [reset = 06h]
      7. 10.1.7  VREG_CONFIG1 (Address = 0Dh) [reset = 80h]
      8. 10.1.8  SBC_CONFIG1 Register (Address = 0Eh) [reset = 01h]
      9. 10.1.9  Scratch_Pad_SPI Register (Address = 0Fh) [reset = 00h]
      10. 10.1.10 CAN_CNTRL_1 Register (Address = 10h) [reset = 04h]
      11. 10.1.11 WAKE_PIN_CONFIG1 Register (Address = 11h) [reset = 00h]
      12. 10.1.12 WAKE_PIN_CONFIG2 Register (Address = 12h) [reset = 02h]
      13. 10.1.13 WD_CONFIG_1 Register (Address = 13h) [reset = 82h]
      14. 10.1.14 WD_CONFIG_2 Register (Address = 14h) [reset = 60h]
      15. 10.1.15 WD_INPUT_TRIG Register (Address = 15h) [reset = 00h]
      16. 10.1.16 WD_RST_PULSE Register (Address = 16h) [reset = 00h]
      17. 10.1.17 FSM_CONFIG Register (Address = 17h) [reset = 00h]
      18. 10.1.18 FSM_CNTR Register (Address = 18h) [reset = 00h]
      19. 10.1.19 DEVICE_CONFIG0 Register (Address = 19h) [reset = 10h]
      20. 10.1.20 DEVICE_CONFIG1 (Address = 1Ah) [reset = 00h]
      21. 10.1.21 DEVICE_CONFIG2 (Address = 1Bh) [reset = 00h]
      22. 10.1.22 SWE_TIMER (Address = 1Ch) [reset = 28h]
      23. 10.1.23 LIN_CNTL (Address = 1Dh) [reset = 20h]
      24. 10.1.24 HSS_CNTL (Address = 1Eh) [reset = 00h]
      25. 10.1.25 PWM1_CNTL1 (Address = 1Fh) [reset = 00h]
      26. 10.1.26 PWM1_CNTL2 (Address = 20h) [reset = 00h]
      27. 10.1.27 PWM1_CNTL3 (Address = 21h) [reset = 00h]
      28. 10.1.28 PWM2_CNTL1 (Address = 22h) [reset = 00h]
      29. 10.1.29 PWM2_CNTL2 (Address = 23h) [reset = 00h]
      30. 10.1.30 PWM2_CNTL3 (Address = 24h) [reset = 00h]
      31. 10.1.31 TIMER1_CONFIG (Address = 25h) [reset = 00h]
      32. 10.1.32 TIMER2_CONFIG (Address = 26h) [reset = 00h]
      33. 10.1.33 RSRT_CNTR (Address = 28h) [reset = 40h]
      34. 10.1.34 nRST_CNTL (Address = 29h) [reset = 2Ch]
      35. 10.1.35 WAKE_PIN_CONFIG3 Register (Address = 2Ah) [reset = E0h]
      36. 10.1.36 WAKE_PIN_CONFIG4 Register (Address = 2Bh) [reset = 22h]
      37. 10.1.37 WD_QA_CONFIG Register (Address = 2Dh) [reset = 0Ah]
      38. 10.1.38 WD_QA_ANSWER Register (Address = 2Eh) [reset = 00h]
      39. 10.1.39 WD_QA_QUESTION Register (Address = 2Fh) [reset = 3Ch]
      40. 10.1.40 SW_ID1 Register (Address = 30h) [reset = 00h]
      41. 10.1.41 SW_ID2 Register (Address = 31h) [reset = 00h]
      42. 10.1.42 SW_ID3 Register (Address = 32h) [reset = 00h]
      43. 10.1.43 SW_ID4 Register (Address = 33h) [reset = 00h]
      44. 10.1.44 SW_ID_MASK1 Register (Address = 34h) [reset = 00h]
      45. 10.1.45 SW_ID_MASK2 Register (Address = 35h) [reset = 00h]
      46. 10.1.46 SW_ID_MASK3 Register (Address = 36h) [reset = 00h]
      47. 10.1.47 SW_ID_MASK4 Register (Address = 37h) [reset = 00h]
      48. 10.1.48 SW_ID_MASK_DLC Register (Address = 38h) [reset = 00h]
      49. 10.1.49 DATA_y Register (Address = 39h + formula) [reset = 00h]
      50. 10.1.50 SW_RSVD_y Register (Address = 41h + formula) [reset = 00h]
      51. 10.1.51 SW_CONFIG_1 Register (Address = 44h) [reset = 50h]
      52. 10.1.52 SW_CONFIG_2 Register (Address = 45h) [reset = 00h]
      53. 10.1.53 SW_CONFIG_3 Register (Address = 46h) [reset = 1Fh]
      54. 10.1.54 SW_CONFIG_4 Register (Address = 47h) [reset = 00h]
      55. 10.1.55 SW_CONFIG_RSVD_y Register (Address = 48h + formula) [reset = 00h]
      56. 10.1.56 HSS_CNTL2 (Address = 4Dh) [reset = 00h]
      57. 10.1.57 EEPROM_CONFIG (Address = 4Eh) [reset = 00h]
      58. 10.1.58 HSS_CNTL3 (Address = 4Fh) [reset = 00h]
      59. 10.1.59 INT_GLOBAL Register (Address = 50h) [reset = 00h]
      60. 10.1.60 INT_1 Register (Address = 51h) [reset = 00h]
      61. 10.1.61 INT_2 Register (Address = 52h) [reset = 40h]
      62. 10.1.62 INT_3 Register (Address 53h) [reset = 00h]
      63. 10.1.63 INT_CANBUS_1 Register (Address = 54h) [reset = 00h]
      64. 10.1.64 INT_7 (Address = 55h) [reset = 00h]
      65. 10.1.65 INT_EN_1 Register (Address = 56h) [reset = FFh]
      66. 10.1.66 INT_EN_2 Register (Address = 57h) [reset = 7Eh]
      67. 10.1.67 INT_EN_3 Register (Address = 58h) [reset = FEh]
      68. 10.1.68 INT_EN_CANBUS_1 Register (Address = 59h) [reset = BFh]
      69. 10.1.69 INT_4 Register (Address = 5Ah) [reset = 00h]
      70. 10.1.70 INT_6 Register (Address 5Ch) [reset = 00h]
      71. 10.1.71 INT_EN_4 Register (Address = 5Eh) [reset = DFh]
      72. 10.1.72 INT_EN_6 Register (Address = 60h) [reset = FFh]
      73. 10.1.73 INT_EN_7 Register (Address = 62) [reset = FFh]
  12. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 CAN Transceiver Physical Layer Standards:
      2. 11.1.2 LIN Transceiver Physical Layer Standards
      3. 11.1.3 EMC Requirements:
      4. 11.1.4 Conformance Test Requirements:
      5. 11.1.5 Related Documentation
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Support Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  13. 12Revision History
  14. 13Mechanical, Packaging, and Orderable Information
    1. 13.1 Mechanical Data
VSUP and VHSS Under-voltage

VSUP is the primary input supply rail required for the device to function properly. There are three voltage levels monitored by the device, power on reset and two under-voltage level. For all functions and output voltage rails to be in regulation the device must exceed UVSUP5R. If VSUP is in under-voltage, the device loses the supply source needed to keep the internal regulators in regulation. This causes the device to go into a state where communication between the microprocessor and the TCAN285x-Q1 is disabled. In this mode, the device is still active but VCC1, VCC2 and VEXCC can be experiencing under voltage events and other functions is not active, like watchdog. No mode change can take place. The device is not able to receive information from the bus; thus, does not pass any signals from the bus, including any Bus Wake using BWRR signals to the microprocessor. VCC1 determines which UVSUP level, UVSUP33R/F or UVSUP5R/F. If VSUP keeps ramping down and drops below VSUP(PU)F, the device enters powered off state. When VSUP returns, the device comes up as if there is an initial power on. All registers are cleared and the device has to be reconfigured from the stored EEPROM values that are retained. During an UVSUP event, the device has some functionality. The LDOs are in pass through mode until VSUP ≥ UVSUPxxR and VCC1 exceeds the UVCC1xxR level. The device transitions to restart mode if VCC1 < UVCC1xxF and stays in restart mode until UVCC1xxR is cleared (the restart timer, tRSTTO, is ignored).

For devices where VCC1 is 5V, UVSUP5R/F is the only VSUP under-voltage rail monitored. When VSUP drops below UVSUP5F, The CAN and LIN transceivers are turned off and LDOs are in pass thru mode. See Table 8-13 for relationship between VSUP, VCC15, VCAN, device mode and transceivers.

When VCC1 is 3.3V, both UVSUP33R/F and UVSUP5R/F are monitored. When powering up, VSUP has to exceed UVSUP33R for VCC1 to be in regulation and above UVSUP5R for VCC2 and other functions of the device to work properly. When VSUP is ramping down, UVSUP5F is the first UVSUP level that sets an UVSUP5 interrupt flag, register 8’h52[4], and turns off the CAN transceiver. The LIN transceiver is still functioning, but does not always meet the data sheet electrical and timing specifications. If VSUP keeps dropping, the next level is UVSUP33F. When this is reached, the UVSUP33 interrupt flag is set, register 8’h52[3]. When this level is reached, the LIN transceiver is turned off. See Table 8-14 for relationship between VSUP, VCC133, VCAN, device mode and transceivers.

Under-voltage on the high-side switches power, VHSS, is indicated by interrupt INT_4 register 8'5A[0] UVHSS. How the high-side switches behave due to an UVHSS event is determined by HSS_CNTL3 register 8'h4F[6:5].

Table 8-13 Under-voltage Events for VCC15, Device State and Transceiver State
VSUPVCC1VCANDEVICE STATECAN TRANSCEIVERLIN TRANSCEIVER
> UVSUP5> UVCC15> UVCANNormal or StandbyAs ProgrammedAs Programmed
> UVSUP5< UVCC15NARestartWake capable or offWake capable or off
> UVSUP5> UVCC15> UVCANPrevious StateAs ProgrammedAs Programmed
> UVSUP5> UVCC15> UVCANPrevious StateAs ProgrammedAs Programmed
> UVSUP5> UVCC15< UVCANPrevious StateListen, Wake capable or offAs Programmed
Table 8-14 Under-voltage Events for VCC133, Device State and Transceiver State
VSUPVCC1VCANDEVICE STATECAN TRANSCEIVERLIN TRANSCEIVER
> UVSUP5> UVCC133> UVCANNormal or StandbyAs ProgrammedAs Programmed
> UVSUP5< UVCC133NARestartWake capable or offWake capable or off
> UVSUP5> UVCC133> UVCANPrevious StateAs ProgrammedAs Programmed

< UVSUP5

> UVSUP33

> UVCC133NANormal or StandbyOffAs Programmed

< UVSUP5

> UVSUP33

< UVCC133NARestartOffOff
> UVSUP5> UVCC133< UVCANNormal or StandbyListen, Wake capable or offAs Programmed
Note:
  • If a thermal shut down or short circuit event takes place while the regulator is in UV, the device transitions to sleep mode (fail-safe mode disabled) or fail-safe mode if enabled.
  • When UVCC1 does not clear by the time the restart timer expires, the device enters the fail-safe mode, if enabled (except in an UVSUP event). If not enabled the device transitions to sleep mode and turn off VCC1. When VCC1 is enabled on for sleep mode, an UVCC1 event proceeds in the same manner. In an UVSUP event, the device stays in Restart mode due to UVCC1 and the restart timer is ignored.
  • OV/UVHSS is not shown in the table as OV/UVHSS only impacts the high-side switches.