SLUSF25A September   2025  – November 2025 UCC27834 , UCC27884

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Dynamic Electrical Characteristics
    7. 5.7 Timing Diagrams
    8. 5.8 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Input Stages and Interlock
      2. 6.3.2 Undervoltage Lockout (UVLO)
      3. 6.3.3 Level Shifter
      4. 6.3.4 Output Stage
      5. 6.3.5 Low Propagation Delays and Tightly Matched Outputs
      6. 6.3.6 HS Node dV/dt
      7. 6.3.7 Operation Under Negative HS Voltage Condition
    4. 6.4 Device Functional Modes
      1. 6.4.1 Input and Output Logic Table
      2. 6.4.2 Operation Under 100% Duty Cycle Condition
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
        1. 7.2.2.1 Selecting HI and LI Low Pass Filter Components (RHI, RLI, CHI, CLI)
        2. 7.2.2.2 Selecting Bootstrap Capacitor (CBOOT)
        3. 7.2.2.3 Selecting VDD Bypass Capacitor (CVDD)
        4. 7.2.2.4 Selecting Bootstrap Resistor (RBOOT)
        5. 7.2.2.5 Selecting Gate Resistor RON/ROFF
        6. 7.2.2.6 Selecting Bootstrap Diode
        7. 7.2.2.7 Estimate the UCC278X4 Power Losses
      3. 7.2.3 Application Curves
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
      2. 7.4.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 Device Support
      1. 8.1.1 Third-Party Products Disclaimer
    2. 8.2 Documentation Support
      1. 8.2.1 Related Documentation
    3. 8.3 Receiving Notification of Documentation Updates
    4. 8.4 Support Resources
    5. 8.5 Trademarks
    6. 8.6 Electrostatic Discharge Caution
    7. 8.7 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

HS Node dV/dt

During typical switching operation of a half-bridge driver, the HS (also known as switch node) voltage swings between ground and the bus voltage. The UCC278X4 is rated to withstand HS transition rates of up to 100V/ns without signal distortion, logic errors, or damage. This level of dV/dt immunity enables UCC278X4 to operate in faster switching applications and systems using wide-bandgap power devices such as GaN FETs.