SNVA856B May   2020  – October 2022 LM63615-Q1 , LM63625-Q1 , LM63635-Q1 , LMR33620 , LMR33620-Q1 , LMR33630 , LMR33630-Q1 , LMR33640 , LMR36006 , LMR36015 , TPS54360B , TPS54560B

 

  1.   Working With Inverting Buck-Boost Converters
  2.   Trademarks
  3. Introduction
  4. Inverting Buck-Boost Converter
  5. Basic Operation
  6. Operating Considerations of a Buck Based Inverting Buck-Boost
    1. 4.1 Voltage Stress
    2. 4.2 Current Stress
    3. 4.3 Power Loss and Efficiency
    4. 4.4 Small Signal Behavior
      1. 4.4.1 Measuring IBB Bode Plots
      2. 4.4.2 Testing Load Transients on an IBB
      3. 4.4.3 Simulation
  7. Component Selection for the IBB
    1. 5.1 Inductor Selection
    2. 5.2 Capacitor Selection
    3. 5.3 External Feed-back Divider
  8. General Considerations
  9. Auxiliary Functions
    1. 7.1 Enable Input Level Shift
    2. 7.2 Synchronizing Input Level Shift
    3. 7.3 Power-Good Flag Level Shift
    4. 7.4 Output Clamp
    5. 7.5 Output Noise Filtering
  10. Design Examples
    1. 8.1 Converting +12 V to –5 V at 3 A
    2. 8.2 Converting +5 V to –5 V at 1 A
  11. Summary
  12. 10References
  13. 11Revision History

Introduction

Many systems require a negative power supply rail, when all that is available is a positive supply with respect to ground. Examples of such systems include both medical ultrasound scanners and test and measurement equipment. A unique DC/DC converter called an inverting buck-boost (IBB) can be used to provide this negative rail from a positive supply, all with a common ground connection. Almost any ordinary buck regulator can be converted into an IBB with a few simple changes in line and load connections. This application report details the conversion from a buck to an IBB, the operation of the converter and things that you need to consider to make your power supply application a success.