SPRAC77E January   2022  – February 2022 TMS320F28379D , TMS320F28379D-Q1 , TMS320F28379S

 

  1.   Trademarks
  2. 1Introduction
  3. 2PTO – PulseGen
    1. 2.1 PulseGen Implementation Overview
    2. 2.2 PulseGen Limitations
    3. 2.3 PulseGen CLB Configuration
    4. 2.4 PulseGen Input and Output Signals
  4. 3PTO – QepDiv
    1. 3.1 QepDiv Implementation Overview
    2. 3.2 QepDiv Limitations
    3. 3.3 QepDiv Divider Settings and Initialization
    4. 3.4 QepDiv CLB Configuration
  5. 4PTO – Abs2Qep
    1. 4.1 Abs2Qep Chip resources
    2. 4.2 Abs2Qep Theory of Operation
      1. 4.2.1 Abs2Qep Translation Equations
      2. 4.2.2 Abs2Qep Translation Example
      3. 4.2.3 Abs2Qep Zero Cross Detection
    3. 4.3 Abs2Qep CLB Configuration
      1. 4.3.1 Abs2Qep QEP-A/B Pulse Train Generation
      2. 4.3.2 Abs2Qep Halt Latch
      3. 4.3.3 Abs2Qep High Level Controller (HLC)
    4. 4.4 Abs2Qep Input and Output Signals
  6. 5PTO – QepOnClb QEP Decoder
    1. 5.1 QepOnClb and eQEP Comparison
    2. 5.2 QepOnClb Chip resources
    3. 5.3 QepOnClb Theory of Operation
    4. 5.4 QepOnClb CLB Resources
      1. 5.4.1 QepOnClb QCLK State Machine
      2. 5.4.2 QepOnClb Direction Decode
      3. 5.4.3 QepOnClb Error Detection
      4. 5.4.4 QepOnClb Simulation Waveforms
  7. 6Example Projects
    1. 6.1 Hardware Requirements
    2. 6.2 Installing Code Composer Studio and C2000WARE-MOTORCONTROL-SDK™
    3. 6.3 Import and Run Example Project
    4. 6.4 PulseGen Example
    5. 6.5 QepDiv Example
    6. 6.6 Abs2Qep Example
      1. 6.6.1 Watch Variables
      2. 6.6.2 Test Signals
      3. 6.6.3 Pin Usage and Test Connections
    7. 6.7 QepOnClb Example
      1. 6.7.1 Watch Variables
      2. 6.7.2 Header Pin Connections
  8. 7Library Source and Projects
    1. 7.1 Locating the Library Source Code
    2. 7.2 Import and Build the Library Project
    3. 7.3 PTO - PulseGen API
      1. 7.3.1 pto_pulsegen_runPulseGen
      2. 7.3.2 pto_startOperation
      3. 7.3.3 pto_pulsegen_setupPeriph
      4. 7.3.4 pto_pulsegen_reset
    4. 7.4 PTO - QepDiv API
      1. 7.4.1 pto_qepdiv_config
      2. 7.4.2 pto_startOperation
      3. 7.4.3 pto_qepdiv_setupPeriph
      4. 7.4.4 pto_qepdiv_reset
    5. 7.5 PTO - Abs2Qep API
      1. 7.5.1 Abs2Qep API Configuration
      2. 7.5.2 pto_abs2qep_runPulseGen
      3. 7.5.3 pto_abs2qep_setupPeriph
      4. 7.5.4 pto_abs2qep_translatePosition
    6. 7.6 PTO - QepOnClb API
      1. 7.6.1 pto_qeponclb_setupPeriph
      2. 7.6.2 pto_qeponclb_initCLBQEP
      3. 7.6.3 pto_qeponclb_configMaxCounterPos
      4. 7.6.4 pto_qeponclb_enableCLBQEP
      5. 7.6.5 pto_qeponclb_resetCLBQEP
      6. 7.6.6 pto_qeponclb_getCounterVal
      7. 7.6.7 pto_qeponclb_getCLBQEPPos
      8. 7.6.8 pto_qeponclb_clearFIFOptr
  9. 8Using the Reference APIs in Projects
    1. 8.1 Adding PTO Support to a Project
    2. 8.2 Routing To and From the CLB
    3. 8.3 Initialization Steps
      1. 8.3.1 PTO-PulseGen API Initalization
      2. 8.3.2 PTO-QepDiv API Initialization
      3. 8.3.3 PTO-Abs2Qep API Initialization
      4. 8.3.4 PTO-QepOnClb API Initialization
  10. 9References
  11.   Revision History

QepOnClb Theory of Operation

A QEP decoder intreprets a pulse train output from an incremental encoder. A basic QEP pulse train consists of the signals QEP-A, QEP-B, and QEP-I as shown in Figure 5-3. These signals have the following characteristics:

  • The QEP-A/B phase indicates the direction of movement. If the rising edge of QEP-A leads by 90 degrees, then the movement is forward (clockwise). If the rising edge of QEP-A lags, then the direction is reverse (counter-clockwise). This is illustrated in Figure 5-2.
  • The QEP-A/B frequency is proportaional to the disk's velocity.
  • The index signal, QEP-I, indicates crossing absolute zero.

Figure 5-2 QEP-A, QEP-B State Diagrams

Design approach:

  1. Select CLB components that map to the requirements of the decoder. Table 5-2 provides an example of this mapping.
  2. Draw a waveform to help visualize the desired interaction between CLB blocks. Figure 5-3 includes an example QEP waveform, CLB generated signals, and the corresponding CLB blocks used to implement the feature.
  3. Define the equations for LUTs and FSM modules. A detailed description of each is provided in Section 5.4.

Table 5-2 Example Mapping Decoder Features to CLB Blocks
Decoder Function CLB Block Mapping
32-bit position counter Maps directly to the CLB 32-bit counter module. By connecting match1 and match2 to reset and an event, a count between 0 and a maximum position (MAXPOS) can be achieved.
Memory of the past state Detection of a valid state transition, direction and error all depend on the past state of QEP-A/B. This maps to an FSM which has the ability to store the past state.
Comparison between past and present state Once the past state is available from an FSM, comparison of the current and previous state can be accomplished by a LUT. If a LUT is not available, then an FSM can also provide this functionality. Making a comparison is required for both direction detection and error detection.
Interrupt and counter capture Capturing the counter value and interrupting the CPU maps to the functionality of the HLC.
CPU input to the decoder such as reset and enable Control bits from the CPU route through the GPREG to a LUT and combined (either OR or AND) with other system signals.
Figure 5-3 QepOnClb Waveform Example