STDA011 September   2025 UCC25661

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Introduction
  5. 2Benefits of GaN In LLC Resonant Converter
    1. 2.1 Higher Efficiency
    2. 2.2 Faster Switching Speeds
    3. 2.3 Reduced Parasitic Capacitances
    4. 2.4 Improved Power Density
    5. 2.5 High Thermal Conductivity
    6. 2.6 Lower Junction Temperatures
  6. 3LLC Resonant Converter
    1. 3.1 The Relationship Between Output Voltage (VOUT) and Switching Frequency (fS) in an LLC Resonant Controller
      1. 3.1.1 The LLC Charging Challenge
      2. 3.1.2 A Wide VIN/VOUT Capable LLC
  7. 4Practical Application of LLC Converters for a Battery Charger Leveraging GaN Switches
    1. 4.1 Requirements and Scope
    2. 4.2 Charging Curve for Lithium-Ion Battery
    3. 4.3 How to Support Wide VOUT Range in an LLC Design for Battery Chargers
    4. 4.4 The Prototype Hardware
  8. 5Summary

Improved Power Density

GaN FETs allow for smaller, more compact designs with higher power density. Because of the improved efficiency and better thermal performance, converters using GaN can operate at higher power levels while maintaining manageable thermal conditions.

MOSFET-based converters need to be larger or require more complex cooling systems to handle the same power levels due to the higher heat dissipation.